
2

UNIVERSITATEA DIN CRAIOVA

FACULTATEA DE AUTOMATICĂ, CALCULATOARE ŞI

ELECTRONICĂ

Departamentul de Calculatoare și Tehnologia Informației

Computers in English

Software application for numerical analysis of analog

circuits with advanced user interface

BACHELOR DEGREE PROJECT

Scientific coordinator,

Professor Marius BREZOVAN, PhD, Eng

Author,

Diana MANDACHE

 July 2016

3

„Any fool can know. The point is to understand”

Albert Einstein

4

CONTENT

1 INTRODUCTION ... 6

2 APPLICATION REQUIREMENTS ... 7

3 TECHNOLOGIES USED .. 8

3.1 MATLAB ... 8

3.2 PYTHON ... 10

3.3 TKINTER ... 12

3.4 PYTHON IMAGING LIBRARY (PIL) & PILLOW .. 13

3.5 MATLAB ENGINE API FOR PYTHON .. 14

3.6 MATPLOTLIB ... 15

4 FUNDAMENTALS ON NUMERICAL ANALYSIS OF ELECTRIC CIRCUITS .. 16

4.1 MODELING AND ANALYSIS PROBLEM .. 16

4.2 ANALYSIS OF ELECTRIC CIRCUITS THROUGH NUMERICAL COMPUTING TECHNIQUES ... 17

4.3 ELEMENTS OF TOPOLOGY OF ELECTRIC CIRCUITS .. 18

4.3.1. Circuit graphs.. 18

4.3.2. Description of topology matrix ... 20

4.4 TOPOLOGICAL ANALYSIS OF DC ANALOG CIRCUITS ... 25

4.4.1 General mathematical model ... 25

4.4.2 Reduced-order mathematical models ... 27

4.5 TOPOLOGICAL ANALYSIS OF AC ANALOG CIRCUITS ... 31

4.5.1 Symbolic representation of harmonic quantities .. 31

4.5.2 General mathematical model ... 34

4.5.3 Reduced-order mathematical models ... 35

5 APPLICATION IMPLEMENTATION .. 37

5.1 OVERVIEW .. 37

5.2 PRESENTATION LAYER ... 39

5.2.1 Draw Schematic .. 39

5.2.2 Load/Save Schema .. 41

5.2.3 View Results .. 42

5.2.4 Plot Results ... 43

5.3 DATA TRANSLATION LAYER .. 45

5

5.3.1 Interpret Schema .. 45

5.3.2 Interpret Results .. 49

5.4 LOGIC LAYER ... 49

5.4.1 Topology Analysis ... 49

5.4.2 Generate Mathematical Model .. 51

5.4.3 Solve Mathematical Model ... 51

5.4.4 Validate Results .. 52

6 TESTING ... 53

6.1 DC RUNNING EXAMPLE ... 53

6.2 AC RUNNING EXAMPLE ... 59

7 CONCLUSION ... 62

7.1 SUMMARY .. 62

7.1 PROBLEMS ENCOUNTERED ... 63

7.2 FUTURE DEVELOPMENT DIRECTION ... 63

REFERENCES ... 64

APPENDIX .. 65

6

1 INTRODUCTION

 The rapid development of manufacturing technologies has allowed the increase in

complexity of engineering applications that require advanced tools for development.

Consequently there were developed integrated circuits that have hundreds or thousands of

discrete elements and whose analysis would be impossible without electronic computing

tools. As a result, specialized software for Computer Aided Design (CAD) of such systems

emerged on the market, however, no commercial program is perfect in terms of covering all

particular situations that arise in practice. Moreover, they are rigid, they don’t allow

interventions in the body of the program so the researchers cannot adapt them to their own

needs.

 In this context, through this project I seeked the development of a software

application that was able to overcome these drawbacks: a modular, flexible, with future

development opportunities, equipped with all the amenities of a commercial program.

 The program is based on state-of-the-art analysis algorithms that incorporate both

knowledge of electrical engineering and software engineering, such that optimum

performances are achieved. It was developed using two of the most acclaimed technologies in

the scientific community, Python and MATLAB.

 The resulting application, named CIRCUS, which stands for CIRCUit Simulator, has

a graphical user interface which facilitates the insertion of input data in form of electric

diagrams, specifying the circuit parameters and working regimes along with the analysis

parameters. Afterwards, this information is transmitted to the computational unit which

performs the circuit analysis. Then the results are communicated to the user in a easy-to-read

form (both numerical and graphical).

 This paper is organized in seven sections which present the project requirements, the

software tools used, the theoretical fundamentals the algorithms used rely on, the description

of the software implementation, detailed running examples and concluding opinions.

7

2 APPLICATION REQUIREMENTS

 CIRCUS is designed to be a user-friendly, simple and intuitive application for

electrical circuit analysis that allows the user, whether he is experienced or not in the domain

of electrical engineering, to draw the schematic of a circuit and specify the values of the input

parameters. The system returns the output (values of current intensities and voltages) as a

response. The user views these results and can choose to plot some of them.

 The detailed list of functional requirements of the application are the following:

1. Add circuit elements to schematic (add resistor, add inductor, add capacitor, add

voltage source, add current source, add ground).

2. Connect circuit elements by drawing wires (add wire).

3. Set the parameter values of the elements.

4. Move elements.

5. Rotate elements.

6. Delete elements.

7. Choose the working regime (direct current, alternating current).

8. Start a new drawing session.

9. Load the schematic from a file.

10. Save the schematic to a file.

11. Save the schematic as EPS.

12. Determine the nodes of the circuit and draw them on the schematic.

13. Error handling: determine if the topology of the circuit is correct.

14. Solve the circuit i.e. find the intensity of the currents and the voltages of each element

and display the results.

15. Plot the amplitude-frequency characteristics for an element’s quantity (current or

voltage) chosen by user.

8

3 TECHNOLOGIES USED

 In the process of planning the project, for choosing the most suitable software

resources to meet the objectives of the final program, I conducted a comparative study based

on the knowledge acquired in the four years of bachelor studies, as well as on scientific

literature. In the choice of the most appropriate tools, the following criteria were considered:

 advanced features for graphical interfaces

 comprehensive routines for matrix computations

 allowing effortless calculations by vectorization instead of repetitive statements

 compatible technologies that can interact fluently

 application portability

 allowing the graphical post-processing of the obtained results

 robustness and reliability

 intuitive ease of use

 extensive documentation and strong community

 Subsequent to this analysis, I have chosen MATLAB for developing the

computational modules destined for the systematic analysis of electrical circuits which

involve vast matrix operations. Along with this, Python was an excellent match for building

the graphical user interface and to acquire the data, interpret it and feed it to the algorithm.

3.1 MATLAB

 The name MATLAB stands for MATrix LABoratory. MATLAB was written

originally as a wrapper on FORTRAN libraries for linear algebra. The software package has

been commercially available since 1984 and is now considered as a standard tool at most

universities and commercial enterprises around the world.

 MATLAB is a high-performance language for technical computing. It integrates

computation, visualization, and programming environment. Furthermore, MATLAB is a

modern programming language environment: it has refined data structures, contains built-in

editing and debugging tools, and supports object-oriented programming. These factors make

MATLAB a first-rate tool for teaching and research.

9

 MATLAB has many advantages for solving technical problems in contrast with

traditional coding languages (e.g., C, FORTRAN). MATLAB is an intuitive framework

whose basic data element is an array that does not require dimensioning. It has powerful

built-in procedures that allow a very wide range of computations. It also has easy to use

graphics commands that make the visualization of results immediately available. Specific

functions are gathered in packages specified as toolbox. There are toolboxes for signal

processing, symbolic computation, control theory, simulation, optimization, and several other

fields of applied science and engineering.

 MATLAB also offers many predefined mathematical functions for technical

computing which contains a large set of mathematical functions, like sine, cosine, absolute

value, phase angle or complex conjugate, as well as a number of predefined constant values,

like Pi, Infinity, NaN, etc.

 The fundamental component of MATLAB is the matrix (mxn), special cases of

matrices are column vectors (mx1) and row vectors (1xn), even a single-valued element

(number) is considered to be a one row and one column matrix (1x1). It provides functions

that generate elementary matrices, for example, the matrix of zeros, the matrix of ones, and

the identity matrix are returned by the functions zeros, ones, and eye, respectively. It also

supplies special matrices, matrices that have unique properties which make them useful for

testing.

 MATLAB has two different types of arithmetic operations: matrix operations and

array operations, the latter doing element-by-element calculations, such as multiplication,

division or exponentiation.

 One of the problems encountered most frequently in scientific computation is the

solution of systems of simultaneous linear equations. With matrix notation, a system of

simultaneous linear equations is written: Ax = b, where there are as many equations as

unknown. A is a given square matrix of order n, b is a given column vector of n components,

and x is an unknown column vector of n components. MATLAB offers two typical options to

solve for x, one is by using matrix inverse, inv, so x = inv(A)*b and the other is to use the

backlash operator, behind which stands the algorithm of Gaussian elimination.

 Program files can be scripts that simply execute a series of MATLAB statements, or

they can be functions that also accept input arguments and produce output. Both scripts and

10

functions contain MATLAB code, and both are stored in text files with a .m extension. While

scripts store variables in a workspace that is shared with other scripts, a function’s variables

are internal for it. However, functions are more flexible and more easily extensible.

 MATLAB is also a programming language, like other computer programming

languages, it has some decision making structures for control of command execution. These

decision making or control flow structures include for loops, while loops, and if-else-end

constructions. By creating a file with the extension .m, the user can easily write and run

programs which do not need to be compiled since MATLAB is an interpretative language.

MATLAB has thousands of functions, and others can be added using m-files.

 The problem formulation that is sought to be solved involves both many matrix

operations and solving of linear equations systems (as explained in Chapter 4). Therefore, the

most suitable programming environment for the computational unit of the application is

MATLAB. Not only it is a world renowned choice for researchers, a reliable programming

environment, but it also unburdens the programmer of writing redundant code by featuring

extensive built-in procedures. The version used is R2015a.

3.2 Python

 Python is a clear and powerful programming language created in the late 1980s by

Guido van Rossum, and named after Monty Python. It is widely used for a variety of

applications from testing microchips at Intel, to powering Instagram, to building video games

with the PyGame library.

 Python is an interpreted, high-level, general purpose, dynamic programming

language. Python supports multiple programming paradigms, including object-oriented,

imperative and functional programming or procedural styles. It encourages Rapid Application

Development (RAD) due to its dynamic typing and dynamic binding systems, automatic

memory management and garbage collection along with high-level built-in data structures

and large and extensive standard library. Python is also attractive for use as a scripting or

glue language to connect existing components together; it supports modules and packages,

which favors program modularity and code reuse.

 Python’s design philosophy prioritizes code readability, and its syntax allows

programmers to express concepts in fewer lines of code and in a clearer manner. It closely

11

resembles the English language, using keywords like “not” and “in”, which makes it easy to

discern; this is also stimulated by the lack of redundant punctuation , most importantly, the

lack of curly brackets: it uses whitespace indentation to delimit blocks. Also, Python has a

strict set of rules, known as PEP 8, that guide every Python developer into how to format

their code. Therefore, any script, whether it was written by a novice or a professional, will

look very similar and be just as easy to read.

 Python interpreters are available for many operating systems, making Python code

portable. With the help of third-party tools, such as Py2exe or Pyinstaller, Python code can be

packaged into stand-alone executable programs for most of the operating systems, so Python-

based software can be used on those environments with no need to install a Python

interpreter.

 Python is such a popular choice for programmers by virtue of the effortless and fast

debugging it provides and¸ consequently, increased productivity, due to the absence of the

compilation step. A segmentation fault will never be encountered, alternatively, when an

error is detected, the interpreter raises an exception, if the program doesn't catch the

exception, the interpreter prints a stack trace. The fast edit-test-debug cycle makes it very

quick and effective to debug a program just by adding some print statements here and there in

the code. Moreover, the debugger is also written in Python.

 Some programming-language particularities of Python are:

 a variety of basic data types are available: numbers (floating point, complex, and

unlimited-length long integers), strings (both ASCII and Unicode);

 three powerful data types: two sequence classes: lists and tuples, and a mapping

class: dictionaries;

 it supports object-oriented programming with classes and multiple inheritance,

 code can be grouped into modules and packages;

 the language supports raising and catching exceptions, resulting in cleaner error

handling;

 data types are strongly and dynamically typed, mixing incompatible types (e.g.

attempting to add a string and a number) causes an exception to be raised, so

errors are caught sooner;

12

 it contains advanced programming features such as generators and list

comprehensions;

 automatic memory management: relieves the developer from having to manually

allocate and free memory in your code.

 One of Python’s greatest strengths is its large standard library. The Python Package

Index, the official repository of third-party software for Python, contains more than 72,000

packages offering a wide range of functionality, including: graphical user interfaces, web

frameworks, multimedia, databases, networking and communications; test frameworks,

automation and web scraping, documentation tools, system administration; scientific

computing, text processing, image processing.

 What is more, Python is free software, on one hand it is free to download, use and

include it in applications and, on the other hand, it can be freely modified and distributed

because the language is available under an open source license. It also has a strongly built

and enthusiastic community which aims to continually expand the open source

knowledgebase, as well as help the beginner users of Python.

 Having gained fundamental knowledge of Python during my bachelor studies and

having discovered all its advantages and rising acclaim among developers, I decided that

developing the CIRCUS application using Python will give me the chance to improve my

proficiency with this tool. Moreover, I exploited the features and strengths of Python

programming language which proved to fit the project’s requirements. I used version 2.7.10.

3.3 TkInter

 The Tkinter module, which stands for “Tk interface”, is the standard Python interface

to the Tk GUI toolkit and is included with the standard Microsoft Windows and Mac OS X

install of Python.

 Tkinter is implemented as a Python wrapper around a Tcl interpreter embedded in the

Python interpreter. Tkinter calls are translated into Tcl commands which are fed to this

embedded interpreter, thus making it possible to mix Python and Tcl in a single application.

 Tcl stands for Tool Command Language and it is a scripting language commonly used

for rapid prototyping, scripted applications, GUIs and testing. The combination of Tcl and the

Tk GUI toolkit is referred to as Tcl/Tk.

13

 Some of the main components of TkInter are:

 Basic widgets: Toplevel, Frame, Button, Checkbutton, Entry, Label, Listbox,

OptionMenu, Photoimage, Radiobutton, Scale;

 Complex widgets: Canvas, Text; these have taggable contents that act like objects;

 Menu, Menubutton, Scrollbar;

 Tk Variables: StringVar, IntVar, DoubleVar, BooleanVar; these are data

containers needed by certain widgets, they can trigger callbacks when their data is

changed;

 Extra modules: tkColorChooser, tkFileDialog, tkMessageBox and more;

 Geometry management: pack, grid, place; they are used to specify the relative

positioning of the positioning of widgets within their container;

 Events: mouse events (e.g. ButtonPress), keyboard events (e.g. KeyRelease) and

window events (e.g. Configure, FocusOut)

 When developing the GUI of CIRCUS I used extensively the Canvas widget

employing all of its features, along with other basic widgets, event handing, callback

functions and tkFileDialog module. What TkInter gains in being simple, effective, powerful

and stable lacks in visual attractiveness, but the final outcome proved to be successful.

3.4 Python Imaging Library (PIL) & Pillow

 Python Imaging Library (abbreviated as PIL) is a free library for the Python

programming language adds image processing capabilities to your Python interpreter. It is

available for Windows, Mac OS X and Linux.

 PIL supports many file formats including PPM, PNG, JPEG, GIF, TIFF, and BMP. It

includes most of the standard procedures for image manipulation including: masking and

transparency handling, image filtering (blurring, contouring, smoothing, edge finding), image

enhancing (sharpening, adjusting brightness, contrast or color), per-pixel manipulations and

more basic image operations like: resizing, cropping, rotating, color conversion and format

conversion.

 Since development stopped in 2011, another project called Pillow has forked the PIL

repository, furthermore this fork has been adopted as a replacement for the original PIL.

14

 I used PIL to maintain transparency and quality of the images, they were stored in

memory as PNG files and TkInter does not support this file format. I also used this library for

transforming PNG images, like rotating at a given angle. As told in §7.2, some problems

were encountered during the development of CIRCUS due to this library.

3.5 MATLAB Engine API for Python

 The MATLAB Engine API for Python provides a package for Python to call

MATLAB as a computational engine. The engine supports the reference implementation

(CPython) for Python versions 2.7, 3.3, and 3.4. After the installation of the package, the

engine can be called during Python sessions.

 The matlab package contains the MATLAB Engine API for Python and a set of

MATLAB array classes in Python. The engine provides functions to call MATLAB, and the

array classes provide functions to create MATLAB arrays as Python objects. You can create

an engine and call MATLAB functions with matlab.engine. You can create MATLAB arrays

in Python by calling constructors of an array type (for example, matlab.double to create an

array of doubles). MATLAB arrays can be input arguments to MATLAB functions called

with the engine.

 This API provides the means to treat .m functions and scripts with the same ease as

Python functions. You can call a MATLAB function from Python code with or without input

arguments. When you want to retrieve the output you only have to tell the engine how many

arguments the function returns; the number of arguments can be 0.

 When working with MATLAB, it comes without saying that the main data type used

is the matrix; since Python does not have an explicit data type for arrays (a matrix is treated

as a list of lists) the engine provides constructors for MATLAB matrices which can receive a

list of lists as input. Any other data conversion is done automatically by the engine, for

example MATLAB’s double and single are converted to Python’s float and logical is

transformed in bool.

 Another interesting and extremely useful feature of this API is that the possible errors

thrown by MATLAB can be caught by the Python application, thus avoiding it to crash and

allowing further troubleshooting.

15

 MATLAB Engine API for Python has some limitations: it cannot connect to

MATLAB on a remote machine, it passes only positional arguments to MATLAB functions

and it is not thread-safe.

 I used this tool as a liaison between the GUI, data acquiring and data manipulation

layers and the computational layer of the application which consists of .m functions with

heavy matrix manipulations.

3.6 Matplotlib

 Matplotlib is a plotting library for the Python programming language and its

numerical mathematics extension NumPy. It provides an object-oriented API for embedding

plots into applications using general-purpose GUI toolkits like TkInter, wxPython or Qt.

 You can generate plots, histograms, power spectra, bar charts, errorcharts,

scatterplots, etc, with just a few lines of code.

 For simple plotting the pyplot interface provides a MATLAB-like interface,

particularly when combined with IPython. For the power user, you have full control of line

styles, font properties, axes properties, etc, via an object oriented interface or via a set of

functions familiar to MATLAB users.

 I used this tool to display some results after post-processing i.e. to plot amplitude-

frequency characteristics of the behavior of certain circuit elements in alternate current. I

integrated this with the TkInter toolkit.

16

4 FUNDAMENTALS ON NUMERICAL ANALYSIS OF

ELECTRIC CIRCUITS

4.1 Modeling and analysis problem

The electric circuit is a physical object which accomplishes a certain function. It

represents a practical implementation of a system (fig. 4.1) to convert an input signal s(t) to a

response r(t) [3,4].

 s(t) r(t) Sistem

fizic

Fig. 4.1. Treatment of an electric circuit as a system

The signal can be any electrical quantity (voltage or current) while the response can

be a voltage, a current or other quantity expressed in terms of voltages and currents (e.g.

power). The correspondence between a circuit and a system is not unique, because the same

system can be built as circuits with different structures.

The problems related to electric circuits are of two categories [2-6]:

- Analysis of a given circuit. The circuit structure is known, as well as the types and

parameters of all circuit components. The input signal is also known, while the response is

seeking. In common cases, the solution of an analysis problem is unique.

- Synthesis of a circuit which accomplishes a given function. If a synthesis problem

has a solution, this is not unique.

The systematical analysis of circuits requires simplified models associated to the real

circuit, named circuit models (fig. 4.2). They are concepts that use approximations and/or

idealizations to simplify the study of real phenomena. The circuit models are represented with

graphical symbols as electric diagrams together with the characteristics of the elements. The

elements of the circuit model are, at their turn, idealizations of real elements, and they are

named ideal elements (example: ideal capacitor, ideal resistor, etc.).

The ideal elements are described by extremely simple mathematical equations, so that

the model circuit can be described by simple equations too. The assembly of these equations

System

17

is the mathematical model of the circuit (fig. 4.2).

By modeling, a problem of circuit analysis becomes a mathematical one, which

requires the solving of an equations system. The solution of the equation system is accepted

as solution of the circuit analysis problem.

 Circuit electronic

(obiect fizic)

Circuit model
Model matematic

(sistem de ecuaţii)

Fig. 4.2. Modeling of electric circuits

The analysis is acceptable if their results are found, with acceptable deviations, in the

corresponding quantities (voltages and currents) of the real circuit.

The choosing of idealized models depends on the structure and on the working regime

of the circuit, so that the same circuit could accept many models, depending on some working

parameters (as the working the frequency).

Although the real circuits have generally unique solutions (excepting particular

situations), the solution may not be found because of wrong modeling. On the other hand, in

practice, wrong solution obtained through analysis can be interpreted as correct.

4.2 Analysis of electric circuits through numerical computing

techniques

The electric circuits used in practice have complex structures, so that it is difficult to

build and solve the associated mathematical models. In most practical cases, this task could

be impossible without using electronic computers. Due to the particularities of real circuits,

they can be classified in categories which can be treated in unitary manner. The unitary

treatment can be completed using dedicated software tools, which accomplish certain

functions as follows:

- allow specifying the input data as a text or electric diagram;

- build automatically a mathematical model;

- solve the equations system;

- give the results as text files or graphics, depending on particularities.

The commercial computing programs from the market cannot substitute totally the

Model circuit
Mathematical model

(eq. system)
Electric circuit

(physical object)

18

specialist in circuit analysis, they are complementary tools only. They cannot be used

effectively without knowing the principles and methods of circuit analysis.

None of the dedicated programs can cover all situations possible in engineering

practice. Another significant disadvantage of such programs is related to restrictions to

intervene into their body to adapt it for certain particular applications. As consequence, it is

totally explicable the necessity to develop new software tools for circuit analysis, more

flexible and adaptable to particular applications.

4.3 Elements of topology of electric circuits

4.3.1. Circuit graphs

In order to treat the methods of analysis in a systematic manner, one needs to develop

simple and robust algorithms intended for topology description, i.e. the interconnection of circuit

elements. An algorithm for topological analysis must be able to convert any circuit into a unitary

form, which requires a minimum amount of memory and holds the entire information needed for

the analysis process. The technical literature presents several methods for topological analysis

which use the same main concepts: branch, node (or vertex), loop of circuit.

The circuit branch is a part of a circuit with no ramifications; it is in fact one two-

terminal element. The node is a point where one or many branches are convergent. The grade

of a node is numerically equal to the number of branches connected together in this node. The

loop is a polygon built from circuit branches.

For a given circuit it is useful indexing the branches and nodes with natural numbers,

as it is shown in the example of fig. 4.3.

Fig. 4.3. Example circuit for topology study

A systematic and simple description of the circuit topology is possible by way of a

1

*

*
2 3

4

5 6

0

3 4

6

5

2
7

9

8
10

1

19

graph, called a circuit graph. It is obtained by replacing each two-terminal of the circuit (each

circuit branch) with a line, called graph branch. If for each branch a certain sense of reference

for the current flow and voltage is chosen, one obtains a directed graph, or simply digraph

[2]. As an example, the directed graph of the circuit from fig. 4.3 is shown in fig. 4.4.

Fig. 4.4. Circuit direct graph of the example from fig. 4.3

A part of a graph is called subgraph. Two subgraphs are complementary if they

contain no common branch and if they contain together all branches and nodes of the circuit

graph. The subgraph which contains two nodes of grade 1, all other nodes having the grade of

2, is called a path. If there is a path from any point to any other point in the graph, the graph

is called connected graph.

The tree of a graph is a connected subgraph which accomplishes simultaneously the

conditions as follows: it contains all nodes and it does not contain loops. As consequence, the

number of tree branches is one unit less than the number of nodes. The cotree is a subgraph

complementary to the tree. The cotree branches are called links as well.

The tree of a certain circuit (graph) is not unique. A particular tree (called normal

tree) is useful for circuit analysis; it accomplishes the restrictions to contain [2-4]:

- all independent voltage sources;

- as many capacitors as possible;

- as few inductors as possible;

- no independent current source;

- any number of resistors.

In fig. 4.5 a normal tree is shown nearby its cotree, for the circuit of fig. 4.3.

2 3 5
6

1

4

0

2

1

9

4 3

6

7

5

10 8

20

Fig. 4.5. A normal tree for the circuit of fig. 4.3 (a) and its cotree (b)

4.3.2. Description of topology matrix

Topology description through incidence matrices allows storing the information in a

small amount of computer memory. It is also extremely useful for systematic algorithms to

build mathematical models in circuit analysis. The incidence matrices are related to the

circuit directed graph.

Matrix of graph description

To describe in a compact manner the circuit structure, one can assign a text line

containing all information on the position of the element, its type and electrical parameters

[3,4]. For a quick access to the information, it is useful to organize it as a matrix.

The matrix of graph description has a number of lines numerically equal to the circuit

(graph) branches and four or more columns, depending on particular configuration of the

circuit [3].

The first column contains codes assigned to the circuit elements from circuit

branches. These codes are natural increasing numbers showing the priority of the circuit

element to take part in a normal tree, according to the table 2.1. The second column contains

the indexes of circuit branches. The 3
rd

 and 4
th

 columns contain the initial node and the final

node respectively of each branch, according to the arbitrary chosen flowing direction of the

current (shown on the directed graph).

4 3

7

8

5

4

6

0

3 2

2

1

9

6

5

10

3 5

1
4

3

6

0

(a) (b)

21

Table 2.1

Element

code
Circuit element

1 Independent voltage source

2 Capacitor

3 Resistor

4 Inductor

5 Independent current source

If the circuit contains magnetic couplings between coils, a 5
th

 column is added, which

contains the index of the pair inductor in the lines of coupled inductors, or “zero” in all other

lines of the matrix. Additional columns are added to include the circuit element parameters

(as capacities, resistances, electromotive forces, etc.)

Node-branch incidence matrix

The node-branch incidence matrix has a number of lines equal to the number of nodes

and a number of columns equal to the number of circuit (graph) branches:

 ljniaij ,1,,1;0 A . (4.1)

The elements of the matrix are the coefficients of incidence of branches at nodes,

defined as follows:

1

0

1

ija

if i is the initial node of the branch j;

if the branch j does not join the node i;

if i is the final node of the branch j.

This shows that the sum of all elements of each column is equal to zero, so that the

lines are linearly dependent; any line is the sum of all other 1n lines. As consequence, the

rank of this matric is equal to 1n , and one keeps only 1n lines for a complete description

of the incidence of circuit branches to the nodes. The reduced form of the node- branch

incidence matrix is obtained:

 ljniaij ,1,1,1; A , (4.2)

and the missing line corresponds to the node chosen as reference for node voltages. This is

the form used in common practice. It is useful its partitioning by tree branches and cotree

branches respectively:

 cr AAA ' . (4.3)

22

The partition rA is always square and nonsingular.

It is extremely useful that the node-branch incidence matrix allows expressing the

Kirchhoff’s current low (KCL) for the whole circuit in the compact form:

1)1(n0iA , (4.4)

where t
21 ... liiii is the vector of branch currents.

 By partitioning the vector of branch currents relative to the tree / cotree branches, the

KCL (4.4) becomes:

 1)1(

 nccrr

c

r
cr 0iAiA

i

i
AA , (4.5)

from where:

 ccrr iAAi
1

 . (4.6)

which proves that only the cotree branch currents are independent variables. This is

extremely useful to simplify the mathematical models.

Thus, the node-branch incidence matrix allows expressing the branch voltages in

terms of node voltages:

vAu t , (4.7)

where t
21 ... luuuu is the vector of branch voltages, and t

121 ... nvvvv is the

vector of node voltages. The voltage of the reference node is missing from the voltage vector.

Branch-cutset incidence matrix

A closed surface crossed by only one branch of a normal tree is called fundamental

cutset. The sense of the tree branch which crosses the cutset imposes the reference sense of

the cutset. There are 1n fundamental cutsets for any given circuit. In fig. 4.6 the system of

fundamental cutsets of the circuit directed graph from fig. 4.4 is shown. The fundamental

cutsets are indexed as the corresponding tree branches.

The branch-cutset incidence matrix has 1n lines and l columns, where l is the

number of circuit (graph) branches:

 ljniqij ,1,1,1; Q . (4.8)

The elements of the matrix are the coefficients of incidence of branches to cutsets,

defined as follows:

23

1

0

1

ijq

if the branch j crosses the cutset i in the same direction as its

reference;

if the branch j does not cross the cutset i;

if the branch j crosses the cutset i in opposite direction compared to

its reference.

Fig. 4.6. System of fundamental cutsets of the graph from fig. 4.4

Since the partition corresponding to the tree is always equal to the unity square matrix

of size)1()1(nn , the complete description of branches to cutsets can be made the

partition corresponding to the cotree. This latter is called essential incidence matrix or tree

branch-links incidence matrix:

 .)1()1(DQ n-n- 1 (4.9)

The size of this matrix is bn)1(, where b is the number of circuit links.

The branch-cutset incidence matrix allows expressing the KCL for the whole circuit

under the compact form:

1)1(n0iQ . (4.10)

Using the partitioning (4.6), and with similar partitioning of the branch currents, the

equation (4.7) becomes:

 01

 cr

c

r
n-n- iDi

i

i
D)1()1(. (4.11)

which allows expressing the tree-branch currents in terms of cotree-branch currents:

4
3

7

8

6

5

3

10

2

2

1

9

6

5

10

3

5

1

4

6

0

2

1

24

cr iDi . (4.12)

By comparing (4.6) and (4.12) one finds that the essential incidence matrix can be

computed starting from the node-branch incidence matrix:

 cr AAD
1

 .
(4.13)

Branch-loop incidence matrix

The branch-loop incidence matrix is of size lb :

 ljbibij ,1,,1; B . (4.14)

The elements of the matrix are the coefficients of incidence of branches to loops,

defined as follows:

1

0

1

ijb

if the branch j belongs to the loop i and it has the same direction as

the loop;

if the branch j does not belong to the loop i;

if the branch j belongs to the loop i and it has an opposite direction

as the loop.

The matrix structure explains that its partition corresponding to the cotree branches is

always square unity matrix of size bb . Its essential part corresponds to the tree branches,

and this is the transpose of the essential incidence matrix with the sign minus:

 bb 1
t

DB .
(4.15)

The branch-loop incidence matrix allows expressing the Kirchhoff’s voltage law

(KVL) for the whole circuit, in the compact form:

1 b0uB . (4.16)

Using the partition (4.15) and by partitioning the vector of branch voltages related to

tree / cotree branches, (4.16) becomes:

 01

 cr

c

r
bb uuD

u

u
D

tt , (4.17)

which allows expressing the cotree-branch voltages in terms of tree-branch voltages:

rc uDu t . (4.18)

The expression (4.18) proves that only the tree branches are independent variables.

25

4.4 Topological analysis of DC analog circuits

4.4.1 General mathematical model

The general form of a mathematical model of a linear lumped circuit in DC behavior

is a linear algebraic equation system of size 2l which contains:

- 1n equations given by KCL:

1)1(n-0IA ; (4.19)

- b equations given by KVL:

1 b0UB ; (4.20)

- l characteristic equations of the ideal elements of the model circuit:

1),(l0IUf . (4.21)

The components of the vector function (4.21) depend on the type of element, as

follows:

- for linear resistors:

0 kkk IRU sau 0 kkk UGI ; (4.22)

- for independent voltage sources:

kk EU ; (4.23)

- for independent current sources:

kk JI ; (4.24)

The variables (unknowns) of the equations system (4.19)-(4.21) are the branch

currents and voltages:

 ,...

...

t

21

t

21

l

l

UUU

III

U

I

(4.25)

and its solution defines an operation point.

A practical and effective manner to build a mathematical model is based on

partitioning the circuit branches into pl passive branches, El branches with independent

voltage sources and Jl branches with independent current sources. The incidence matrices

and the vectors of branch currents and voltages will be partitioned similarly:

26

 ,JEp

JEp

BBBB

AAAA

 (4.26)

 .
t

ttt

t
ttt

JEp

JEp

UUUU

IIII

 (4.27)

 The matrix forms of the characteristic equations under one of the forms (4.22)-(4.24):

- for passive branches:

1
plpp 0URI or 1

plpp 0GUI , (4.28)

where the square diagonal matrices of resistances (
pp ll R) and conductances (

pp ll G) of passive

branches were used;

- for independent voltage sources:

EU E , (4.29)

where the vector of electromotive forces of independent voltage sources (1El
E) was used;

- for independent current sources:

JI J , (4.30)

where the vector of currents of independent current sources (1Jl
J) was used.

Therefore, the mathematical model (4.19)-(4.21) becomes:

.

sau 11

1

1)1(

JI

EU

GUIURI

U

U

U

BBB

I

I

I

AAA

J

E

lpplpp

b

J

E

p

JEp

n

J

E

p

JEp

pp
0 0

0

0

(4.31)

Since the equation system contains dependent variables, one can conceive reduced-

order mathematical models equivalent with the extended form (4.31). Such models require a

reduced amount of computation effort to provide the same solution as the general model [2-

6]. Some of reduced-order mathematical models suitable for implementation in software

applications are presented below.

27

4.4.2 Reduced-order mathematical models

Kirchhoff’s laws-based models

By substituting the variables EU , JI and pU in (4.31), one obtains the equivalent

mathematical model:

,EBUBIRB

JAIAIA

EJJpp

JEEpp
 (4.32)

whose compact matrix form is:

.
)1(

EB

JA

U

I

I

BRB

AA

E

J

J

E

p

Jlbp

lnEp

E

J

0

0
 (4.33)

The size of the equation system (4.33) is equal to the number of the circuit branches l.

Its variables are the currents of passive branches, the currents of the independent voltage

sources and the voltages of the independent current sources. To solve such an equation

system, specific substituting methods are suitable [7,8].

A version of the method requires substituting the variables EU , JI and pU in (4.31),

to obtain the equation system:

EBUBUB

JAIAGUA

EJJpp

JEEpp
 (4.34)

or

.
)1(

EB

JA

I

U

U

BB

AGA

E

J

E

J

p

lbJp

Elnp

E

J

0

0
 (4.35)

wher voltages of passive branches were used as variables instead of the currents.

Method of passive tree-branch voltages

The mathematical model has a smaller size comparing to the previous method. One

needs to build a normal tree and to perform a partitioning of circuit branches into pal passive

tree-branches, pcl passive cotree-branches (passive links), El branches with independent

voltage sources and Jl branches with independent current sources. Therefore, the essential

incidence matrix will be partitioned similarly:

28

,

\

EJEp

pJpp

E

pa

Jpc

l

l

llca

DD

DD
D

 (4.36)

as well as the vectors of currents and voltages:

 .
t

tttt

t
tttt

JpcEpa

JpcEpa

coarderamuri

UUUUU

IIIII

 (4.37)

The KCL becomes:

1

1

E

pa

l

l

J

pc

E

pa

EJEp

pJpp

0

0

10

01

I

I

I

I

DD

DD
, (4.38)

from where the tree-branch currents are expressed in terms of cotree-branch currents:

J

pc

EJEp

pJpp

E

pa

I

I

DD

DD

I

I
 (4.39)

or

,JDIDI

JDIDI

EJpcEpE

pJpcpppa

 (4.40)

From the first equation (4.40) it results:

JDIID pJpapcpp . (4.41)

The KVL, expressed according to (4.17), is:

1

1

tt

tt

J

pc

l

l

J

pc

E

pa

EJpJ

Eppp

0

0

10

01

U

U

U

U

DD

DD
 (4.42)

or

,1
tt

1
tt

J

pc

lJEJpapJ

lpcEppapp

0

0

UEDUD

UEDUD
 (4.43)

29

from where the cotree-branch voltages are expressed in terms of tree-branch voltages:

.tt

tt

EDUDU

EDUDU

EJpapJJ

Eppapppc

 (4.44)

By multiplying the first equation (4.43), on the left side, with the diagonal matrix of passive

cotree-branch conductances pcG , of size pcpc ll , one obtains:

1

tt

pclpcpcEppcpapppc 0UGEDGUDG (4.45)

The last term from the left-hand is equal to the vector of passive cotree-branches:

pcpcpc IUG (4.46)

By multiplying the last equation, on the left side, with the partition ppD , of size pcpa ll , one

obtains:

1
tt

palpcppEppcpppapppcpp 0IDEDGDUDGD . (4.47)

The last term form the left-hand is replaced according to (4.41), then the passive tree-branch

currents are expressed in terms of the voltages using the passive tree-branch conductance

matrix paG , of size papa ll

papapa IUG . (4.48)

Finally, the mathematical model of the method is obtained:

 JDEDGDUGDGD pJEppcpppapapppcpp tt . (4.49)

This is an linear algebraic equation system of size pal , whose variables are the voltages of the

passive tree-branches. After solving it, the voltages of cotree-branches are computed with

(4.44), then the currents of passive cotree-branches with (4.46) and the tree-branch currents

with (4.40).

Method of passive cotree-branch currents

The method of passive cotree-branch currents is an improved method of the cotree-

branch currents method [3,4]. The size of its corresponding mathematical model is equal to

the number of passive cotree-branches pcl .

As the previously presented method, this needs to build a normal tree and to perform

30

similar partitioning of the circuit branches and essential incidence matrix. The KCL and KVL

are expressed as (4.38) and (4.42). By substituting the variables JpcpaEpa UUUII ,,,, , one

obtains the reduced-order mathematical model:

 JDRDEDIDRDR pJpappEppcpppapppc
ttt . (4.50)

The model variables are the passive cotree-branch currents.

Hybrid method

The hybrid method uses both currents and voltages as variables: the voltages of

passive tree-branches and the currents of the cotree-branches respectively. It has some

significant advantages: the mathematical model is easy to build; the size of the mathematical

model is relatively small; the post-processing of the results is easier than for other methods.

The method needs a normal tree and similar partitioning of the circuit branches and

essential incidence matrix as the two methods described above. One substitutes the passive

tree-branch currents in (4.41) using (4.48):

JDUGID pJpapapcpp . (4.51)

One substitutes the passive cotree-branch voltages with the currents in (4.43), according to

the obvious equation:

pcpcpc IRU (4.52)

to obtain:

EDIRUD
tt

Eppcpcpapp (4.53)

 The equations system containing (4.51) and (4.53) represents the mathematical model

of the hybrid method, with the compact form:

E

J

D

D

U

I

DR

GD
tt
EpJlpcl

ElpalpJ

pa

pc

pppc

papp

0

0
. (4.54)

It is noticeable that in order to exploit the advantages exposed before, I implemented

this hybrid method in the software application developed within this project.

31

4.5 Topological analysis of AC analog circuits

4.5.1 Symbolic representation of harmonic quantities

If a linear circuit is excited by harmonic independent voltage and current sources with

the same frequency, then an AC steady state is established. All currents and voltages are

sinusoidal quantities with the same frequency as the sources. The power networks intended

for generation, transport and distribution of the electric energy almost everywhere in the

world are AC networks.

The AC steady state is specific to linear circuits only [5], and it is a particular case of

variable working regime. The analysis through time-domain mathematical models requires

laborious computation, and to avoid this issue it is more convenient to use a mathematical

transformation, by replacing time-domain quantities with complex numbers (phasors) with no

physical sense. As consequence, mathematical models with differential equations are

replaced by algebraic equations with complex coefficients [2,5].

The common phasor method requires the transformation of sinusoidal quantities such:

)sin(2)(tXtx
(4.55)

into complex numbers:

)Im()Re(sincos XjXjXXeXX j (4.56)

which contain no information on the working frequency. I used common notations for the

angular frequency () and the phase () of the sinusoidal quantity, capital letter for the RMS

value (X), and underlined capital for the complex quantity (X). For this kind of analysis, the

concept of complex impedance associated to a passive two-pole is important [5]:

)Im()Re(sincos
)(

ZjZjXR
I

U
j

I

U
e

I

U

Ie

Ue

I

U
Z IU

I

U
j

j

jD

. (4.57)

I denoted the phase difference between the voltage and the current flowing the two-pole, R

the real part (called resistance) and X the imaginary part (called reactance) of the two-pole.

The complex admittance is also defined as:

jBG
U

I
j

U

I

ZU

I
Y

D

 sincos
1

, (4.58)

where G is called conductance and B is susceptance.

According to the theorems of complex-domain representation [2,5], the characteristic

32

equations of the circuit elements in the complex domain are obtained:

- for resistors

kkk IRU or kkk UGI ; (4.59)

- for inductors

kkk IL , (4.60)

where k is the phasor associated to the magnetic flux of the inductor of the k-th circuit

branch;

- for capacitors

kkk
UCq , (4.61)

where
k

q is the phasor associated to the electric charge of the capacitor of the k-th circuit

branch;

 - for independent voltage sources

kk EU ; (4.62)

 - for independent current sources

kk JI ; (4.63)

 The equations describing the reactive elements become:

 - for magnetically insulated inductors:

kkk ILjU ; (4.64)

 - for pairs of magnetically coupled inductors:

,jjkjkj

jkjkkk

ILjILjU

ILjILjU

 (4.65)

where the coupling inductances kjL and jkL could be positive or negative, depending on the

type of the magnetic coupling. By solving the equation system (4.65) by respect to the

currents, one obtains:

 ;
)(

)(

jkkjk
jkkjjk

j

jkjkj
jkkjjk

k

ULUL
LLLL

j
I

ULUL
LLLL

j
I

(4.66)

- for capacitors:

33

k
k

k I
C

jU

1
 sau kkk UCjI . (4.67)

The general form of a mathematical model in the complex domain is an algebraic

equation system of size CL lll 2 which contains:

-)1(n equations given by the KCL:

1)1(n0IA ; (4.68)

- b equations given by the KVL:

1 b0UB ; (4.69)

- l equations of the circuit elements with the particular forms (4.59)-(4.63):

1),,,(l0QIUf ; (4.70)

- Ll equations of the form (4.64) for magnetically insulated inductors, and (4.65) for

magnetically coupled inductors:

LL j ILU , (4.71)

where Ll is the number of circuit branches with inductors, and
LL ll L is the square matrix of

the inductances. This latter contains the self-inductances on the diagonal, and mutual

inductances as non-diagonal elements. LL IU , are the vectors of phasors of voltages and

currents of circuit branches with inductors.

- Cl equations of the form (4.67) for the capacitors:

CC j UCI , (4.72)

where Cl is the number of circuit branches with capacitors, and
CC ll C is the square and

diagonal matrix of the capacitances; CC IU , are the vectors of phasors of voltages and

currents of circuit branches with capacitors.

The variables of the so built system are the phasors of the voltages and currents of the

circuit branches, as well as the magnetic fluxes of inductors and electric charges of

capacitors. Once the solutions of the system are obtained, the time-domain quantities are

computed using the inverse transform formula:

)Re(

)Im(
arctgsin2)(

X

X
tXtx . (4.73)

34

4.5.2 General mathematical model

An effective method to build a generally valid mathematical model requires

partitioning the circuit branches into pl passive branches, El branches with independent

voltage sources and Jl branches with independent current sources. The incidence matrices, as

well as the vectors of branch currents and voltages are partitioned similarly:

 .
t

ttt

t
ttt

JEp

JEp

UUUU

IIII

 (4.74)

The characteristic equations of passive branches have the general form:

0 kkk IZU sau 0 kkk IUY , (4.75)

where the complex impedances kZ and the complex admittances kY are:

 - for resistors:

kk RZ ; kk GY ; (4.76)

 - for magnetically insulated inductors:

kk LjZ ;
k

k
L

jY

1
 ; (4.77)

 - for magnetically coupled inductors, from (4.65) and (4.66) the impedance matrix

and the admittance matrix are obtained:

jjk

kjk

LL

LL
jZ ;

kjk

kjj

jkkjjk
LL

LL

LLLL
j

)(

1

Y ; (4.78)

- for capacitors:

k
k

C
jZ

1
 ; kk CjY . (4.79)

 In order to gain in terms of computational effort, the equations of the type (4.60),

(4.61) may be missed, so that the mathematical model becomes:

35

,

sau 11

1

1)1(

JI

EU

UYIUZI

U

U

U

BBB

I

I

I

AAA

J

E

lpplpp

b

J

E

p

JEp

n

J

E

p

JEp

pp
0 0

0

0

(4.80)

It is an algebraic equation system of size l2 .

Since the equation system (4.80) contains dependent variables, one can conceive

reduced-order mathematical models to reduce the amount of computation effort [1-6,9].

4.5.3 Reduced-order mathematical models

Kirchhoff’s laws-based models

By substituting the variables EU , JI and pU in (4.80), one obtains the equivalent

mathematical model:

,EBUBIZB

JAIAIA

EJJpp

JEEpp
 (4.81)

whose compact matrix form is:

.
)1(

EB

JA

U

I

I

BZB

AA

E

J

J

E

p

Jlbp

lnEp

E

J

0

0
 (4.82)

The size of this equation system is equal to the number of the circuit branches l. Its

variables are the currents of passive branches, the currents of the independent voltage sources

and the voltages of the independent current sources. To solve such an equation system,

specific substituting methods are suitable [7,8].

A version of the method requires substituting the variables EU , JI şi pI from (4.80),

to obtain the equation system:

,

,

EBUBUB

JAIAUYA

EJJpp

JEEpp
 (4.83)

with the compact matrix form:

36

.
)1(

EB

JA

I

U

U

BB

AYA

E

J

E

J

p

lbJp

Elnp

E

J

0

0
 (4.84)

Method of passive tree-branch voltages

The method of passive tree-branch voltages used similar principles as for DC circuits,

and it requires a smaller number of variables comparing to the previous method. The obtained

mathematical model is:

 JDEDYDUYDYD pJEpcpppaappcpp tt , (4.85)

where:

 cY – complex admittance matrix of passive cotree branches;

 aY – complex admittance matrix of passive tree branches;

paU – vector of voltage phasors of passive tree branches.

 The admittance matrices are non-diagonal for circuits with magnetically coupled

inductors only.

Method of passive cotree-branch currents

By extrapolating the result obtained for DC circuits, the mathematical model of the

method is obtained:

 JDZDEDIDZDZ pJappEppcppappc
ttt , (4.86)

where impedance matrices of passive branches occur.

Hybrid method

The mathematical model of the method is built using a similar procedure as for DC

circuits:

E

J

D

D

U

I

DZ

YD
tt
EpJlpcl

ElpalpJ

pa

pc

ppc

app

0

0
. (4.87)

I implemented the hybrid method for AC networks in the software application

developed within this project.

37

5 APPLICATION IMPLEMENTATION

5.1 Overview

 The CIRCUS application is structured on three levels based with different

functionality: the presentation layer, the data translation layer and the logic layer. They

communicate between each other and each one performs several related functions executed

by their sub-blocks as follows:

 Presentation Layer (TkInter GUI)

Two blocks for providing data to the system:

- Draw Schema: this block facilitates the creation of data to fuel the system;

the user draws a schematic for the circuit that will be analyzed by the system

specifying the values of the necessary parameters.

- Load/Save Schema: allows the user to save a schematic at an external

location or load a previously saved schematic.

Two blocks for presenting the results obtained by the system:

- View Results: this block displays the results received form the data translation

layer in tabular form.

- Plot Results: this block communicates with the result interpreter block of the

middle layer if the user wishes a graphical representation of some of the

results present in tabular form; this feature is available only for AC analysis

with multiple frequencies.

 Data Translation Layer (Python scripts)

- Interpret Schema: this block receives the information from one of the blocks

of the GUI that is in charge of data acquisition, information concerning the

electrical schematic drawn or loaded by the user; its role is to interpret the

electrical diagram by establishing dependencies between the circuit elements

and the circuit nodes.

38

- Interpret Results: this block communicates with the logic layer and maps the

results received in unstructured form to the inherent quantities of the elements

of the electrical circuit (currents and voltages); then sends the results to the

presentation layer.

Fig 5.1 Application Design

 Logic Layer (MATLAB scripts)

- Analyze Topology: this block converts the information received from the

schema interpreter into a connectivity matrix which describes in a complete

manner the topology of the given electrical circuit as depicted in §4.3.

- Generate Mathematical Model: this block is comprised of two

complementary blocks with the purpose of generating the mathematical model

by applying the hybrid method presented in §4.4.2 and §4.5.3, although they

have many similarities, they are customized for AC and DC working regimes.

39

- Solve Mathematical Model: this block actually consists of two related blocks;

both are responsible for solving the systems of linear equations that represent

the mathematical model. One block is in charge of DC analysis which is

represented by a system of linear equations with real coefficients and the other

is responsible of AC analysis i.e. solving a system of linear equations with

complex coefficients.

- Validate Results: this block verifies the correctness of the results based on the

well-known Power Theorem.

5.2 Presentation Layer

5.2.1 Draw Schematic

 The focal point of the GUI is the gridded canvas which is extensively used when

drawing and editing the schematic, along with its callback functions triggered by mouse

events on it, like click, release and motion.

Fig 5.2 GUI presentation

 Beside it comes a set of action buttons which are categorized according to their

functionality:

40

- drawing buttons : Add Resistor, Add Inductor, Add Capacitor, Add Voltage

Source, Add Current Source, Add Ground, Add Wire.

- editing buttons : cursor button for editing an element’s parameters , move button,

delete button, rotate clockwise button;

- resolve buttons : radio buttons for setting the working regime, for AC there are

extra entry text fields for specifying the frequency or a range of frequencies and

finally there is the solving button which “sets the gears of the application in

motion”.

 The GUI keeps track of the user’s actions by raising flags at the push of the buttons,

monitoring the mouse events and treating them according to the flags that are raised at a

given moment.

 The TkInter Canvas comes with a very useful function i.e. find_withtag() that gets

the handles for all items having a given tag; the widget also provides two predefined tags:

ALL which matches all items on the canvas and CURRENT which matches the item under

the mouse pointer, if any. Therefore, when editing the circuit elements, this function was used

to determine which object was selected by the user and then perform the necessary

modifications on it.

 The piece of code below is extracted from the callback function that is triggered when

clicking on the canvas after having pressed the delete button and depicts the way an element

is removed from the circuit.

Fig 5.3 Source code for deleting an element - extracted from gui.py

 Another widget used is designing the graphical interface is TkInter Toplevel which is

a pop-up window that behaves like any other window; it was used it for displaying the

41

results, announcing eventual errors and allowing the user to edit the parameters of the

elements (as seen below).

Fig 5.4 Editing parameter values in GUI

5.2.2 Load/Save Schema

 Another purpose that the GUI serves is loading schematics from an external file and

saving them for later uses; this actions are carried out by accessing the File tab from the app’s

menu that presents the user with the options to: start a new session, load a schematic from an

external file, save the current schematic to an external file or save the drawing as an EPS

picture.

The codification of the external files which are in charge with storing the information

about the diagram of an electrical circuit is the following: for every element is reserved a line

and the various information on a line is separated by a whitespace. The first token in a line is

a character telling the type of the element (e.g. R for resistor, G for ground, etc), the next two

tokens are the x and y canvas coordinates of the central placing point of the element,

followed by an integer ranging from 0 to 3 which informs if the element is rotated (e.g. 1

means a clockwise rotation of 90 degrees), the next token is the value of its parameter and the

42

last one is the element’s name. For encoding a wire segment the structure is a little different;

the first token represents the type codification, then the next four token represent the x and y

canvas coordinates of the starting point of the segment and the ending point, respectively.

Fig 5.5 GUI menu presentation

5.2.3 View Results

 After clicking the Solve button, the information on the canvas is being passed on the

rest of the components of the system and the app responds to the user’s command with the

solution of the electrical circuit, i.e. current and voltage values. These results are displayed on

a Toplevel window in a tabular form, along with the potential parameters of the simulation

(frequencies in case of AC working regime).

Fig 5.6 Result window

43

 However, the system can throw some errors when trying to solve the circuit, these are

usually caused by the faulty schematic so the user needs to be informed of these faults and

their causes (if possible) in order to fix the problem and rerun the solving process.

 CIRCUS informs the user about exceptions encountered in its attempt to obtain the

results by showing a pop up window like one of the following:

Fig 5.7 Error message example

Fig 5.8 Error message example

5.2.4 Plot Results

 As seen in Fig 5.6 the user has the possibility to examine the graphical representations

of the analysis results by choosing from two dropdown lists the element and its electrical

measurement (current or voltage) that will be plotted. The user visualizes the behavior of the

element in question when functioning in alternating current at the specified range of

frequencies.

In Fig 5.10 is presented the source code for the callback function of the button “Plot”

which uses the library matplotlib to produce MATLAB-like graphics with Python, which can

also be integrated with TkInter widgets. The function plot(X,Y) creates a 2D plot of the data

in Y versus the corresponding values in X; both X and Y are vectors of the same length. In

our case, on x-axis there is the frequencies vector and on y-axis the vector with the value of

the current or voltage at every frequency in the aforementioned vector. The current and

voltages are being treated both in terms of absolute value and phase shift.

44

Fig 5.9 Plot example

Fig 5.10 Source code for plotting callback function - extracted from gui.py

45

5.3 Data Translation Layer

5.3.1 Interpret Schema

 This application unit is in charge with interpreting the schematic drawn by the user

into data that can be understood by the computational unit of the program i.e. unify the

canvas objects in form of a circuit by establishing the relationships between its components.

Fig 5.11 Class Diagram of elements.py module

46

An object oriented approach is employed to serve this purpose; in Fig 5.11 it is

depicted the abstraction of the circuit elements using inheritance: the superclass Element

holds the common attributes of electrical components which are then particularized in

subclasses (Resistor, Inductor, Capacitor, VoltageSouce, CurrentSource and Ground). The

wires are treated in an independent class because they don’t share enough similarities with

the other elements to be constructed through inheritance.

Fig 5.12 Circuit Class Diagram - circuit.py

 Enumeration classes are made use of to keep track of the element’s type, their

parameter’s names and their measurement units in a clean an organized manner; these classes

are: ElementsEnum, ParamEnum and UnitEnum.

47

 Another key data structure of the application is TerminalPoint; it is a subclass of the

basic class Point defined by two parameters which represent the x and y coordinates of a

point on the canvas. Each element has two terminal points and keeping track of overlapping

terminals is a crucial step in the program.

 The class that gathers together the aforementioned structures and represents the core

of this block is the Circuit class, presented in Fig 5.12. Its attributes and methods can be split

in two categories: one that takes care of the circuit’s construction and keeps track of its

components and another that is responsible with the circuit functioning (working regime,

results).

 An instance of the Circuit class is present in the GUI, so they communicate

dynamically, when changes are being made on the canvas (add/remove/edit element) the

circuit instance is updated. Information is being stored in lists of Element objects and Wire

objects. After the Solve button is pressed the application processes the information stored in

these lists.

 One of the challenges is to determine the circuit nodes that serve in describing the

circuit in terms of topology. The algorithm for finding the nodes has as input a list of

elements and a list of wire segments, its steps are:

1. For every wire segment a list of directly connected (intersecting) wires is

computed and stored.

2. For every wire segment a list of directly connected element terminals is computed

and stored.

3. The groups of connecting wires are determined; the affiliation to a group is

marked by sharing the same name between all connected wires. To achieve this, a

Depth First Search - like approach is chosen. Wire segments represent the nodes

of the undirected graph and their connections represent, intuitively, the vertexes.

Having made these connections, it is straightforward that the connected

components (from graph theory) need to be computed in order to achieve that the

algorithm aims for i.e. find all groups of connected wire segments.

4. With the indirectly connected wires, all indirectly connected terminals can also be

resolved for every wire segment.

5. As a result of these steps, there are duplicate wires, now only one instance of each

wire is kept.

48

6. At this step we have a list of wires and for every wire a list on connected

terminals; all connected terminals are assigned the same node, starting from the

node N0 which signifies connection to ground.

Fig 5.13 Source code for steps 3 and 4 of the finding nodes algorithm

 Having computed the nodes of the circuit, it is effortlessly generated a circuit

description matrix (as seen in Fig 5.14) with the structure presented in §4.3 and pass it as

input to the logic unit.

Fig 5.14 Source code for generating the circuit description matrix

49

5.3.2 Interpret Results

 The purpose of this block is to receive the results obtained from running the

MATLAB scripts, results which are presented in form of vectors or matrices, and to map

them to the corresponding circuit elements in order to be correctly displayed to the user.

Fig 5.15 Source code for calling the MATLAB Engine

5.4 Logic Layer

5.4.1 Topology Analysis

 This is conceivably the most important unit of the application, it takes as input the

description matrix delivered by the data interpreter and generates a node-branch incidence

matrix and its partitions, a normal tree and its corresponding cotree, an essential incidence

matrix and its partitions, whose structure is described in Chapter 4.

 For obtaining the above-mentioned matrices the next steps are followed:

50

1. Identify ideal circuit elements by investigating the first column of the description

matrix; Types vector is generated that contains alphanumeric characters identifying

the elements in ascending order by branch index.

Fig 5.16 Branch data structure exemplification

2. Create a data structure array called Branch (Fig 5.16) that contains fields holding

information about the topology and parameter value of the branch element (type,

code, initial node, final node, value); the array size is equal to the number of branches

in the circuit.

3. Build node-branch incidence matrix according to §4.3.2.

4. Construct a normal tree:

- The purpose of this step is to investigate whether the circuit topology can lead to

results (is valid); if this is not the case then errors are thrown.

- Building the tree is based on an algorithm described in [1]

- The principle on which is based the generation of a normal tree is identifying the

first n-1 linearly independent columns of the node-branch incidence matrix. These

columns correspond to the branches of the normal tree. The function used for this

step is Reduced Row Echelon Form (rref) which is found in the MATLAB

library.

- Partition the node-branch incidence matrix into tree matrix and cotree matrix.

- Build essential incidence matrix (tree branches - cotree branches incidence matrix)

and its partitions, these are incidence matrices for: passive tree branches - passive

cotree branches, passive tree branches - cotree branches with current sources, tree

branches with voltage sources - passive cotree branches, tree branches with

voltage sources - cotree branches with current sources.

51

5.4.2 Generate Mathematical Model

 The equations system is built according to the hybrid method (§4.4.2, §4.5.3) as

SNXM , where:

- M is the system matrix of size equal to the number of passive branches of the

circuit, built by assembling the partitions returned by topology analysis;

Fig 5.17 Source code for generating the mathematical model

- X is the vector of unknowns, containing the currents of passive cotree branches

and the voltages of the passive tree branches;

- S is the vector of the sources;

- N is a matrix built by assembling the partitions returned by topology analysis.

The matrices M and N have real elements for DC analysis and complex elements for

AC analysis.

5.4.3 Solve Mathematical Model

 The equation system built before is solved with the help of backslash operator which

involves a Gauss elimination method. Then we extract from the solution vector the currents

of the passive cotree branches and the voltages of the pasive tree branches, respectively (Fig

5.18).

Fig 5.18 Source code for solving mathematical model

52

5.4.4 Validate Results

 This block ensures the correctness of the results by applying the Power Conservation

Theorem; in order to validate the results, the power delivered by the sources is compared with

the power consumed by the passive circuit elements [5].

Fig 5.19 Source code for computing power balance for AC

53

6 TESTING

6.1 DC Running Example

A complete example is treated to prove the capabilities of CIRCUS for DC networks.

The chosen circuit is of medium level of difficulty (fig. 6.1). It contains 12 branches, so it

requires solving a 12-equation system using the classical method of Kirchhoff’s laws. The

goal is to compute the branch currents and voltages for the parameters specified below:

.V50;V20;V20;V30

;A2;A4;A1

;10;20;5;10;15

6543

434

65432

VVVV

JJJ

RRRRR

Fig. 6.1 Schematic of DC circuit example

I will firstly solve the problem through a CIRCUS analysis, and then the results will

be compared with those given by a SPICE simulation [9]. The main stages of the CIRCUS

simulation, as well as intermediary results will be pointed. The electric diagram drawn in

CIRCUS main window is shown in fig. 6.2.

R2
5

1

2

3

0

R5

I1

V6

I4

R3

V4

R6 V5

V3

R4

4

I3

54

Fig. 6.2 Electric diagram built with CIRCUS GUI

Starting from the diagram, the matrix of graph description is automatically built as in

Fig. 6.3. It has the structure as described in §4.3.2.

Fig. 6.3 Description matrix for the chosen example

The node-branch incidence matrix is then built as in fig. 6.4 (§4.3.2).

Fig. 6.4 Node-branch incidence matrix for the chosen example

55

 This allows finding a normal tree and the corresponding cotree of the network [3]

shown in fig. 6.5 nearby the corresponding partitions of the matrix.

Fig. 6.5 Tree / cotree branches and the partitions of the node-branch incidence matrix

The branch-loop (tree-cotree) incidence matrix is then computed according to

equation (4.13), as in fig. 6.6.

Fig. 6.6 Branch-loop (or tree-cotree) incidence matrix.

 The partitions of the branch-loop incidence matrix required by the hybrid analysis

method (§4.4.2) are shown in fig. 6.7.

56

Fig. 6.7 Partitions of branch-loop incidence matrix

required by the hybrid analysis method

Fig. 6.8 Matrices of circuit parameters

The matrices of circuit parameters are built and shown in fig. 6.8: passive tree-branch

conductance matrix (Ga), passive cotree-branch resistance matrix (Rc), vector of

electromotive forces of voltage sources (E), and vector of currents of independent current

sources (J).

The next step allows assembling the mathematical model of the hybrid method, as an

equation system of size equal to the number of passive branches of the network (§4.4.2).

Therefore, only 5 equations are necessary to solve this 12-branch network (fig. 6.9).

Fig. 6.9 Mathematical model of the hybrid method

The solution of this equation system are found through a Gauss elimination algorithm,

then all other currents and voltages of the circuit are computed with simple explicit equations

as described in §4.4.2. In order to validate the results, the power balance is performed (fig.

6.10) [5].

57

Fig. 6.10 Power balance to validate the simulation results

The final results are transferred to the user in a separate window which is placed on

the screen nearby the circuit diagram to make the results interpretation easier (Fig. 6.11). It is

noticeable that CIRCUS gives complete information regarding the simulation results: the

currents and voltages of all circuit branches.

Fig. 6.11 CIRCUS window with simulation results

To prove the performance of CIRCUS, I completed a witness SPICE simulation. The

SPICE input diagram is shown in fig. 6.12 and the result file in fig. 6.13.

58

R2 15

V5

20

I1

1

R4 5
R5 20

V4 20

R3 10

R6

10

I4 2 V6 50

I3

4

V3 30

4 5

1

2 3

Fig. 6.12. SPICE input diagram

Node voltages

Currents flowing
the voltage
sources

Input data

Fig. 6.13 SPICE output file

59

SPICE returns few results, but the correspondence with the results given by CIRCUS

is obvious. SPICE displays only the currents of the voltage sources, assumed as positive

values if they flow from the terminal – toward + inside the source. It also displays the node

voltages with regard to the reference (ground), so that to compute the branch voltages one

needs additional arithmetic operations. SPICE does not perform a power balance [9].

6.2 AC Running Example

A common RLC series circuit is treated as an AC example. A frequency analysis will

be performed, and frequency characteristics for the output quantities will be built. The

frequency domain, as well as the number of intermediary computation points are specified in

the main window of CIRCUS (fig. 6.14). The circuit parameters and the frequency domain

are viewed on the GUI.

Fig. 6.14 Electric diagram of RLC network built with CIRCUS GUI

60

After running the program, the result window is displayed as in fig. 6.15.

Fig. 6.15 CIRCUS result window for AC analysis

In order to display the frequency characteristics, of any branch current or voltage, the

user choses the circuit element and the quantity of interest by clicking on the buttons from the

bottom-right corner of the window. The desired option is chosen from dropdown lists. The

current which flows through the resistor R1 was chosen and shown in fig. 6.16. Both

amplitude-frequency and phase-frequency are displayed. It is obvious the phenomenon of

electric resonance for a certain frequency, known from the theory [5].

Fig. 6.16 Frequency characteristics generated by CIRCUS

61

I completed a witness SPICE simulation for the same circuit, with the SPICE input

diagram shown in fig. 6.17. The frequency characteristics of the current are shown in fig.

6.18.

R1

50

L1

2

C1

5E-6

V1

AC
V2

0
I(V2)

CURRENT

3 1 2 4

Fig. 6.17 SPICE input diagram of RLC circuit

2

1
2 5 10 20 50 100 200 500

FREQUENCY [Hz]

900.00M

700.00M

500.00M

300.00M

100.000M

C
u

rr
e

n
t

R
M

S
 [

A
]

0

-90.000

-180.00

-270.00

-360.00

C
u

rr
e

n
t

p
h

a
s
e

 [
d

e
g

]

Fig. 6.18 Frequency characteristics of the current computed by a SPICE AC simulation

The similarity of the results returned by CIRCUS and SPICE is obvious. It is

noticeable that CIRCUS translates the angular phases in the 1
st
 and 4

th
 quadrant of the

complex plan.

62

7 CONCLUSION

7.1 Summary

 In order to accomplish the purpose of the project, I began with an extensive study of

the scientific literature. I intended to find the most appropriate software resources to obtain a

reliable, robust and flexible software application. Then I identified the most convenient

simulation algorithms with a high level of generality, which require a relatively reduced

amount of computation effort while still providing accurate results. I decided to use Python

and MATLAB due to their acclaimed popularity in the scientific community and their

facilities suitable for my purpose.

 The software application CIRCUS developed within the project accomplishes the

requirements highlighted before. It is composed of computation modules organized in three

layers. Since it is modular, it can be extended with newer computation facilities.

 The application is accompanied by an advanced user interface to facilitate the

interaction with less experienced and specialized users. For now, from the perspective of a

common user, CIRCUS has the following capabilities:

- Allows specifying the input data of the circuit thanks to an advanced GUI;

- Performs topological analyses for linear analog circuits in DC behavior and AC

behavior;

- Validates the analysis result using the power balance;

- Returns the simulation results in a user friendly manner, as text or/and graphics.

 What is more, I used witness simulations using a well-known commercial simulation

program to prove the accuracy of the results for some relevant examples, two of which are

described in the paper.

63

7.2 Problems Encountered

 The process of developing the project was fairly straightforward, the majority of

software tools I used have detailed documentation and helpful communities, however I

encountered some issues with the Pillow library (a fork of PIL) caused by malfunctions in its

methods; they are introduced hereinafter.

 Python Imaging Library (PIL) doesn’t support converting an EPS file as PNG image

on Windows; I found in the source for the Ghostscript() function in EpsImagePlugin.py that it

says "Unix only". TkInter Canvas allows saving its contents as an EPS file and I

unsuccessfully tried converting that to PNG using PIL

 Another PIL bug is that when a PhotoImage object is garbage-collected by Python,

namely when you return from a function which stored an image in a local variable, the image

is cleared even if it’s being displayed by a Tkinter widget. To avoid this, I kept an extra

reference to the image object.

7.3 Future Development Direction

 I plan to exploit the growth potential of this application as much as possible by adding

new functionality that is also innovative in this field.

 First and foremost, I have in view to develop the application entirely in Python and

with the help of free software and also make it independent of the operating system, all in all

I wish to make it as widely available as possible and to distribute the application freely for

high-schools and other educational establishment whose students may benefit from it.

 A significant ambition is to give the user the possibility to load an image of a hand-

drawn electric diagram as input and the application to be able to solve it. This requires a

complex image recognition module along with comprehensive machine learning research.

 I plan to add support for electronic circuits which require controlled sources and

nonlinear elements.

 Another intention is to add more the computational modules for solving circuits in

transient behavior; this is difficult because the mathematical models consist of nonlinear

differential equations which require complicated algorithms.

64

REFERENCES

[1] D.O. Pederson, A Historical Review of Circuit Simulation, IEEE Solid-State Circuits

Magazine, Year: 2011, Volume: 3, Issue: 2, Pages: 43 – 54.

[2] L.O. Chua, C.A. Desoer, E.S. Kuh, Linear and nonlinear circuits, McGraw-Hill, Inc.,

New York, 1987.

[3] L.O. Chua, P.M. Lin, Computer-aided analysis of electronic circuits – algorithms and

computational techniques, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1975.

[4] D. Topan, L. Mandache, Roland Suesse, Advanced Analysis of Electric Circuits,

Wissenschaftsverlag Thüringen, Langenwiesen, 2011.

[5] D. Topan, Bazele electrotehnicii, notiţe de curs, lecture notes, Faculty of Automation,

Computers and Electronics Craiova, academic year 2012-2013.

[6] M. Iordache, L. Dumitriu, Simularea asistată de calculator a circuitelor analogice:

algoritmi şi tehnici de calcul, Ed. Politehnica Press, Bucureşti 2002.

[7] R. Militaru, Numerical methods, lecture notes, Faculty of Automation, Computers and

Electronics Craiova, academic year 2012-2013.

[8] Matthew N. O. Sadiku, Ph.D., Numerical Techniques in Electromagnetics – Second

Edition, CRC Press, Boca Raton, 2001.

[9] A. Vladimirescu, SPICE (in Romanian – translation from English), Ed. Tehnica,

Bucharest, 1999.

[10] M. Ghinea, V. Fireţeanu, MATLAB – calcul numeric, grafică, aplicaţii, Editura Teora,

Bucureşti, 1997.

[11] The Mathworks Inc., MATLAB 8.5 User’s Guide, 2015.

[12] Fredrik Lundh, An Introduction to Tkinter, 1999.

[13] Allen B. Downey, Think Python Version 2.0.17, Green Tea Press, Needham,

Massachusetts, 2012.

[14] David Houcque, Introduction to MATLAB for engineering students, Northwestern

University, Evanston, Illinois, 2005.

[15] John E. Grayson, Python and Tkinter Programming, Manning Publications, Greenwich,

2000.

A-1

APPENDIX

gui.py

from Tkinter import *

from PIL import Image, ImageTk

from tkFileDialog import *

import matplotlib

matplotlib.use("TkAgg")

from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg

from matplotlib.figure import Figure

from circuit import *

class GUI(Tk):

 def __init__(self,parent):

 Tk.__init__(self,parent)

 self.parent = parent

 self.resizable(width=True, height=True)

 self.myColor = 'SpringGreen4'

 self.defaultColor = self.cget("bg")

 self.canvas_width = 800

 self.canvas_height = 640

 self.canvas_width_total = 1600

 self.canvas_height_total = 1200

 self.gridSpacing = 10

 self.grid_vertical = []

 self.grid_horizontal = []

 self.iconFile = 'images/buttons/circus.ico'

 self.imagesPil = {ElementsEnum.Resistor:

Image.open(Resistor.imgFile),

 ElementsEnum.Inductor: Image.open(Inductor.imgFile),

 ElementsEnum.Capacitor:

Image.open(Capacitor.imgFile),

 ElementsEnum.VoltageSource:

Image.open(VoltageSource.imgFile),

 ElementsEnum.CurrentSource:

Image.open(CurrentSource.imgFile),

 ElementsEnum.Ground: Image.open(Ground.imgFile)}

 self.imagesTk = {ElementsEnum.Resistor:

ImageTk.PhotoImage(self.imagesPil[ElementsEnum.Resistor]),

 ElementsEnum.Inductor:

ImageTk.PhotoImage(self.imagesPil[ElementsEnum.Inductor]),

 ElementsEnum.Capacitor:

ImageTk.PhotoImage(self.imagesPil[ElementsEnum.Capacitor]),

 ElementsEnum.VoltageSource:

ImageTk.PhotoImage(self.imagesPil[ElementsEnum.VoltageSource]),

A-2

 ElementsEnum.CurrentSource:

ImageTk.PhotoImage(self.imagesPil[ElementsEnum.CurrentSource]),

 ElementsEnum.Ground:

ImageTk.PhotoImage(self.imagesPil[ElementsEnum.Ground])}

 self.buttonImages = {"move":

ImageTk.PhotoImage(Image.open("images/buttons/move.png")),

 "rotate":

ImageTk.PhotoImage(Image.open("images/buttons/rotate.png")),

 "delete":

ImageTk.PhotoImage(Image.open("images/buttons/delete.png")),

 "run":

ImageTk.PhotoImage(Image.open("images/buttons/head.png")),

 "cursor":

ImageTk.PhotoImage(Image.open("images/buttons/cursor.png")),

 "resistor":

ImageTk.PhotoImage(Image.open("images/buttons/resistor.png")),

 "inductor":

ImageTk.PhotoImage(Image.open("images/buttons/inductor.png")),

 "capacitor":

ImageTk.PhotoImage(Image.open("images/buttons/capacitor.png")),

 "voltage source":

ImageTk.PhotoImage(Image.open("images/buttons/voltage_src.png")),

 "current source":

ImageTk.PhotoImage(Image.open("images/buttons/current_src.png")),

 "ground":

ImageTk.PhotoImage(Image.open("images/buttons/ground.png")),

 }

 '''

 Menu

 '''

 self.menubar=Menu(self)

 filemenu=Menu(self.menubar,tearoff=0)

 filemenu.add_command(label="New", command=self.new_CB)

 filemenu.add_command(label="Load", command=self.file_load_CB)

 filemenu.add_command(label="Save", command=self.file_save_CB)

 filemenu.add_command(label="Save as Image",

command=self.image_save_CB)

 filemenu.add_separator()

 filemenu.add_command(label="Exit", command=self.quit)

 self.menubar.add_cascade(label="File", menu=filemenu)

 helpmenu=Menu(self.menubar,tearoff=0)

 helpmenu.add_command(label="Help",command=self.cursor_CB)

 self.menubar.add_cascade(label="Help",menu=helpmenu)

 self.config(menu=self.menubar)

 self.mainFrame = Frame(self)

 self.frame1 = Frame(self.mainFrame)

 Label(self.frame1, text="Add Elements",

fg=self.myColor).pack(pady=5)

 self.b1 = Button(self.frame1, text='Add Resistor',

image=self.buttonImages["resistor"], compound="top", command=lambda:

self.selectElement_CB(ElementsEnum.Resistor))

 self.b1.pack(fill=X, expand=1)

 self.b2 = Button(self.frame1, text='Add Inductor',

image=self.buttonImages["inductor"], compound="top", command=lambda:

self.selectElement_CB(ElementsEnum.Inductor))

A-3

 self.b2.pack(fill=X, expand=1)

 self.b3 = Button(self.frame1, text='Add Capacitor',

image=self.buttonImages["capacitor"], compound="top",command=lambda:

self.selectElement_CB(ElementsEnum.Capacitor))

 self.b3.pack(fill=X, expand=1)

 self.b4 = Button(self.frame1, text='Add Voltage Source',

image=self.buttonImages["voltage source"], compound="top", command=lambda:

self.selectElement_CB(ElementsEnum.VoltageSource))

 self.b4.pack(fill=X, expand=1)

 self.b5 = Button(self.frame1, text='Add Current Source',

image=self.buttonImages["current source"], compound="top", command=lambda:

self.selectElement_CB(ElementsEnum.CurrentSource))

 self.b5.pack(fill=X, expand=1)

 self.b6 = Button(self.frame1, text='Add Ground',

image=self.buttonImages["ground"], compound="top", command=lambda:

self.selectElement_CB(ElementsEnum.Ground))

 self.b6.pack(fill=X, expand=1)

 self.b7 = Button(self.frame1, text='Add Wire', command=lambda:

self.selectElement_CB(ElementsEnum.Wire))

 self.b7.pack(fill=X, expand=1)

 self.elementsButtons = [self.b1, self.b2, self.b3, self.b4,

self.b5, self.b6, self.b7]

 self.frame1.pack(side=TOP, anchor=NW, fill=X, pady=5)

 self.frame2 = Frame(self.mainFrame)

 Label(self.frame2, text="Edit Elements",

fg=self.myColor).pack(pady=5)

 self.b8 = Button(self.frame2, text='Cursor',

image=self.buttonImages["cursor"], command=self.cursor_CB).pack(fill=X,

side=LEFT, expand=1)

 self.b9 = Button(self.frame2, text='Move',

image=self.buttonImages["move"], command=self.move_CB).pack(fill=X,

side=LEFT, expand=1)

 self.b10 = Button(self.frame2, text='Delete',

image=self.buttonImages["delete"], command=self.delete_CB).pack(fill=X,

side=LEFT, expand=1)

 self.b11 = Button(self.frame2, text='Rotate',

image=self.buttonImages["rotate"], command=self.rotate_CB).pack(fill=X,

side=LEFT, expand=1)

 self.frame2.pack(fill=X, pady=5)

 self.frame3 = Frame(self.mainFrame)

 Label(self.frame3, text="Set functioning regime",

fg=self.myColor).pack(pady=5)

 self.regime = StringVar()

 self.regime.set("dc")

 self.acRadioButton = Radiobutton(self.frame3, text="AC",

variable=self.regime, value="ac", indicatoron=0 ,

command=self.toggleRegime_CB).pack(side=LEFT, fill=X, expand=1)

 self.dcRadioButton = Radiobutton(self.frame3, text="DC",

variable=self.regime, value="dc", indicatoron=0,

command=self.toggleRegime_CB).pack(side=LEFT, fill=X, expand=1)

 self.frame3.pack(fill=X, pady=5)

 self.frame4 = Frame(self.mainFrame)

 self.startFreq = StringVar()

 self.startFreqLabel = Label(self.frame4, text="Start Frequency

[Hz]")

A-4

 self.startFreqEntry = Entry(self.frame4,

textvariable=self.startFreq)

 self.endFreq = StringVar()

 self.endFreqLabel = Label(self.frame4, text="End Frequency [Hz]")

 self.endFreqEntry = Entry(self.frame4, textvariable=self.endFreq)

 self.points = StringVar()

 self.pointsLabel = Label(self.frame4, text="Points per Interval")

 self.pointsEntry = Entry(self.frame4, textvariable=self.points)

 self.b12 = Button(self.mainFrame, text='SOLVE', font=('bold'),

bg=self.myColor, image=self.buttonImages["run"], compound="top",

command=self.run_CB).pack(fill=BOTH, pady=10, anchor=S, side=BOTTOM)

 self.mainFrame.pack(side=LEFT, anchor=N)

 self.canvas = Canvas(self, width=self.canvas_width,

height=self.canvas_height)

 self.xsb = Scrollbar(self, orient="horizontal",

command=self.canvas.xview)

 self.ysb = Scrollbar(self, orient="vertical",

command=self.canvas.yview)

 self.canvas.configure(yscrollcommand=self.ysb.set,

xscrollcommand=self.xsb.set)

self.canvas.configure(scrollregion=(0,0,self.canvas_width_total,self.canvas

_height_total))

 self.xsb.pack(fill=X, side=BOTTOM)

 self.ysb.pack(fill=Y, side=RIGHT)

 self.canvas.pack(side=RIGHT, expand=TRUE, fill=BOTH)

 self.drawGrid()

 self.setFlag()

 self.canvas.bind("<Motion>", self.canvasMotion)

 self.canvas.bind("<ButtonPress-1>", self.canvasClickDown)

 self.canvas.bind("<ButtonRelease-1>", self.canvasClickUp)

 self.canvas.bind("<ButtonPress-3>", self.canvasRightClickDown)

 self.bind('<Escape>', self.endWire_CB)

 '''

 Logic of Application related variables

 '''

 self.selectedElement = None

 self.moveElement = False

 self.deleteElement = False

 self.rotateElement = False

 self.circuit = Circuit()

 self.nodeIdList = []

 self.nodeLabelIdList = []

 self.click = "up"

 self.xold, self.yold = None, None

 self.start = None

 self.newItem = None

 self.oldItem = None

 def drawGrid(self):

A-5

 # vertical lines at an interval of "line_distance" pixel

 if self.grid_horizontal:

 self.deleteGrid()

 for x in range(self.gridSpacing, self.canvas_width_total ,

self.gridSpacing):

 line = self.canvas.create_line(x, 0, x,

self.canvas_height_total, fill="gray90", state=DISABLED)

 self.grid_vertical.append(line)

 self.canvas.tag_lower(line)

 # horizontal lines at an interval of "line_distance" pixel

 for y in range(self.gridSpacing,self.canvas_height_total

,self.gridSpacing):

 line = self.canvas.create_line(0, y, self.canvas_width_total,

y, fill="gray90", state=DISABLED)

 self.grid_horizontal.append(line)

 self.canvas.tag_lower(line)

 def deleteGrid(self):

 for x in self.grid_vertical:

 self.canvas.delete(x)

 self.grid_vertical = []

 for y in self.grid_horizontal:

 self.canvas.delete(y)

 self.grid_horizontal = []

 def new_CB(self):

 self.circuit.clear_circuit()

 self.canvas.delete("all")

 self.drawGrid()

 def file_save_CB(self):

 f = asksaveasfile(mode='w', defaultextension=".txt")

 if f is None: # asksaveasfile return `None` if dialog closed with

"cancel".

 return

 for e in self.circuit.elements:

 line = e.printToFile() + "\n"

 f.write(line)

 for w in self.circuit.wires:

 line = w.printToFile() + "\n"

 f.write(line)

 f.close()

 def file_load_CB(self):

 mask = \

 [("Text files","*.txt"),

 ("All files","*.*")]

 filename = askopenfilename(filetypes=mask)

 if filename is '': # asksaveasfilename return `` if dialog closed

with "cancel".

 return

 self.circuit.clear_circuit()

 self.canvas.delete("all")

 self.drawGrid()

 f = open(filename)

A-6

 lines = f.read().splitlines()

 self.circuit.loadFromFile(lines)

 f.close()

 self.drawFromFile()

 def image_save_CB(self):

 self.canvas.postscript(file="tests/file_name.eps",

colormode='color')

 img = Image.open("file_name.eps")

 img.save("file_name.png", "png") #works only on Unix

 def selectElement_CB(self, e):

 self.selectedElement = e

 if e == ElementsEnum.Resistor:

 for btn in self.elementsButtons:

 if btn is self.b1:

 btn.config(relief="sunken", bg=self.myColor)

 else:

 btn.config(relief="raised", bg=self.defaultColor)

 elif e == ElementsEnum.Inductor:

 for btn in self.elementsButtons:

 if btn is self.b2:

 btn.config(relief="sunken", bg=self.myColor)

 else:

 btn.config(relief="raised", bg=self.defaultColor)

 elif e == ElementsEnum.Inductor:

 for btn in self.elementsButtons:

 if btn is self.b2:

 btn.config(relief="sunken", bg=self.myColor)

 else:

 btn.config(relief="raised", bg=self.defaultColor)

 elif e == ElementsEnum.Capacitor:

 for btn in self.elementsButtons:

 if btn is self.b3:

 btn.config(relief="sunken", bg=self.myColor)

 else:

 btn.config(relief="raised", bg=self.defaultColor)

 elif e == ElementsEnum.VoltageSource:

 for btn in self.elementsButtons:

 if btn is self.b4:

 btn.config(relief="sunken", bg=self.myColor)

 else:

 btn.config(relief="raised", bg=self.defaultColor)

 elif e == ElementsEnum.CurrentSource:

 for btn in self.elementsButtons:

 if btn is self.b5:

 btn.config(relief="sunken", bg=self.myColor)

 else:

 btn.config(relief="raised", bg=self.defaultColor)

 elif e == ElementsEnum.Ground:

 for btn in self.elementsButtons:

 if btn is self.b6:

 btn.config(relief="sunken", bg=self.myColor)

 else:

 btn.config(relief="raised", bg=self.defaultColor)

 elif e == ElementsEnum.Wire:

 for btn in self.elementsButtons:

 if btn is self.b7:

 btn.config(relief="sunken", bg=self.myColor)

 else:

 btn.config(relief="raised", bg=self.defaultColor)

A-7

 self.setFlag("draw")

 self.config(cursor='arrow')

 def run_CB(self):

 self.circuit.regime = self.regime.get()

 if self.circuit.regime == 'ac':

 self.circuit.startFreq = self.startFreq.get()

 self.circuit.endFreq = self.endFreqEntry.get()

 self.circuit.intPoints = self.points.get()

 if self.nodeIdList or self.nodeLabelIdList:

 for i in self.nodeIdList:

 self.canvas.delete(i)

 for i in self.nodeLabelIdList:

 self.canvas.delete(i)

 self.circuit.run_interpreter()

 self.circuit.print_elements()

 for n in self.circuit.terminals:

 if n.node is not None:

 r = 3

 x = n.x

 y = n.y

 self.nodeIdList.append(self.canvas.create_oval(x-r, y-r,

x+r, y+r, outline='red'))

 self.nodeLabelIdList.append(self.canvas.create_text(x, y-

3*r, text=n.node, fill='red'))

 try:

 self.circuit.run_matlab()

 except Exception as e:

 top = Toplevel()

 top.title("ERROR")

 top.iconbitmap(self.iconFile)

 photo =

ImageTk.PhotoImage(Image.open("images/buttons/error.png"))

 Label(top, image=photo).pack(pady=10)

 msg = e.message

 lines = msg.split("\n")

 if len(lines) >= 2:

 Label(top, text=lines[2], fg="indian red", font=(None,

12, 'bold')).pack(pady=5)

 else:

 Label(top, text=lines, fg="indian red", font=(None, 12,

'bold')).pack(pady=5)

 raise

 top = Toplevel(bg=self.myColor)

 top.title("RESULTS")

 top.iconbitmap(self.iconFile)

 '''

 Show results of DC analysis

 '''

 if self.circuit.regime == "dc":

 rows = self.circuit.number_of_branches + 2 # cols = 5

 Label(top, bg=self.myColor, fg="white", justify=LEFT,

font=(None, 10, "bold"), text="DC analysis").grid(row=0, columnspan=5,

pady=10)

A-8

 Label(top, text="Element").grid(row=1, column=0, pady=10)

 Label(top, text="Current [A]").grid(row=1, column=1, pady=10)

 Label(top, text="Voltage [V]").grid(row=1, column=2, pady=10)

 for i in range(0,rows-2):

 r = i+2 #row number

 Label(top, bg=self.myColor, fg="white",

text=self.circuit.branch_elements[i].name).grid(row=r, column=0)

 Label(top, bg=self.myColor, fg="white",

text=self.circuit.currents[i][0]).grid(row=r, column=1)

 Label(top, bg=self.myColor, fg="white",

text=self.circuit.voltages[i][0]).grid(row=r, column=2)

 '''

 Show results of AC analysis

 '''

 if self.circuit.regime == "ac":

 rows = self.circuit.number_of_branches + 3 # cols = 5

 if self.circuit.endFreq == 0:

 Label(top, bg=self.myColor, fg="white", justify=LEFT,

font=(None, 10, "bold"), text="AC analysis at frequency = " +

str(self.circuit.startFreq) + " Hz").grid(row=0, columnspan=5, pady=10)

 else:

 Label(top, bg=self.myColor, fg="white", justify=LEFT,

font=(None, 10, "bold"),

 text="AC analysis with: \n\tstart frequency = " +

str(self.circuit.startFreq) + "Hz\n\tend frequency = " +

str(self.circuit.endFreq)

 + "Hz\n\tintermediary points = "+

str(self.circuit.intPoints)).grid(row=0, columnspan=5, pady=10)

 Label(top, text="Element").grid(row=1, rowspan=2, column=0,

sticky="wens")

 Label(top, text="Current").grid(row=1, column=1, columnspan=2,

sticky="wens")

 Label(top, text="RMS [A]").grid(row=2, column=1, sticky="wens")

 Label(top, text="Phase [deg]").grid(row=2, column=2,

sticky="wens")

 Label(top, text="Voltage").grid(row=1, column=3, columnspan=2,

sticky="wens")

 Label(top, text="RMS [V]").grid(row=2, column=3, sticky="wens")

 Label(top, text="Phase [deg]").grid(row=2, column=4,

sticky="wens")

 for i in range(0,rows-3):

 r = i+3 #row number

 Label(top, bg=self.myColor, fg="white",

text=self.circuit.branch_elements[i].name).grid(row=r, column=0)

 Label(top, bg=self.myColor, fg="white",

text=self.circuit.currents[i]).grid(row=r, column=1)

 Label(top, bg=self.myColor, fg="white",

text=self.circuit.currents_phases[i]).grid(row=r, column=2)

 Label(top, bg=self.myColor, fg="white",

text=self.circuit.voltages[i]).grid(row=r, column=3)

 Label(top, bg=self.myColor, fg="white",

text=self.circuit.voltages_phases[i]).grid(row=r, column=4)

 if self.circuit.endFreq != 0:

A-9

 Label(top, bg=self.myColor, fg="white", justify=LEFT,

font=(None, 10, "bold"), text="Choose element and characteristic to

plot").grid(row=rows+1, column=0, columnspan=2, pady=20)

 element_names = [e.name for e in self.circuit.elements if

e.type is not ElementsEnum.Ground]

 self.plot_element_name = StringVar()

 self.plot_element_name.set(element_names[0]) # default

value

 w1 = apply(OptionMenu, (top, self.plot_element_name) +

tuple(element_names))

 w1.grid(row=rows+1, column=2)

 self.plot_characteristic_name = StringVar()

 self.plot_characteristic_name.set("current") # default

value

 w2 = OptionMenu(top, self.plot_characteristic_name,

"current", "voltage")

 w2.grid(row=rows+1, column=3)

 photo =

ImageTk.PhotoImage(Image.open("images/buttons/diagram.png"))

 b = Button(top, text='Plot', image=photo, compound="top",

command=self.plot_CB)

 b.config(height=35, width=35)

 b.image = photo

 b.grid(row=rows+1, column=4)

 def plot_CB(self):

 element_to_plot =

self.circuit.get_element_by_name(self.plot_element_name.get())

 measurement_to_plot = self.plot_characteristic_name.get()

 plotWindow = Toplevel(bg=self.myColor)

 plotWindow.title("Amplitude-frequency characteristics for " +

element_to_plot.name)

 plotWindow.iconbitmap(self.iconFile)

 x = self.circuit.freq_plot

 if measurement_to_plot == "current":

 y1 = self.circuit.I_ef_plot[element_to_plot.branch-1]

 y2 = self.circuit.I_faza_plot[element_to_plot.branch-1]

 unit = " [A]"

 elif measurement_to_plot == "voltage":

 y1 = self.circuit.U_ef_plot[element_to_plot.branch-1]

 y2 = self.circuit.U_faza_plot[element_to_plot.branch-1]

 unit = " [V]"

 f = Figure()

 f.suptitle('Amplitude-frequency characteristics for '+

element_to_plot.name)

 a = f.add_subplot(211)

 b = f.add_subplot(212)

 a.semilogx(x,y1,'g-')

 a.grid(True)

 a.set_ylabel(element_to_plot.name + " " + measurement_to_plot + "

RMS" + unit)

 b.semilogx(x, y2, 'g-')

 b.grid(True)

A-10

 b.set_xlabel('Frequency [Hz]')

 b.set_ylabel(element_to_plot.name + " " + measurement_to_plot + "

Phase [deg]")

 canvas = FigureCanvasTkAgg(f, master=plotWindow)

 canvas.get_tk_widget().pack()

 def cursor_CB(self):

 self.setFlag("cursor")

 self.config(cursor='arrow')

 def move_CB(self):

 self.setFlag("move")

 self.config(cursor='fleur')

 def delete_CB(self):

 self.setFlag("delete")

 self.config(cursor='X_cursor')

 def rotate_CB(self):

 self.setFlag("rotate")

 self.config(cursor='exchange')

 def setValue_CB(self, window, e, value1, value2=None):

 e.setValue(value1)

 l = e.getLabelId()

 self.canvas.itemconfig(l, text=e.labelText())

 if value2 is not None:

 e.phase = value2

 window.destroy()

 def toggleRegime_CB(self):

 regime = self.regime.get()

 self.circuit.regime = regime

 if regime == "ac": #enable entries

 self.startFreqLabel.pack()

 self.startFreqEntry.pack()

 self.startFreq.set("0")

 self.endFreqLabel.pack()

 self.endFreqEntry.pack()

 self.endFreq.set("0")

 self.pointsLabel.pack()

 self.pointsEntry.pack()

 self.points.set("0")

 self.frame4.pack(fill=X, pady=10)

 elif regime == "dc": #disable entries

 self.startFreqLabel.pack_forget()

 self.startFreqEntry.pack_forget()

 self.endFreqLabel.pack_forget()

 self.endFreqEntry.pack_forget()

 self.pointsLabel.pack_forget()

 self.pointsEntry.pack_forget()

 self.frame4.pack_forget()

 def endWire_CB(self, event): #esc key binding

 if self.selectedElement is ElementsEnum.Wire:

 if self.start is not None:

 self.start = None

 self.canvasClickUp(event)

 def setFlag(self,f=None):

A-11

 if f is "move":

 self.selectedElement = None

 self.moveElement = True

 self.deleteElement = False

 self.rotateElement = False

 self.modifyElement = False

 elif f is "delete":

 self.selectedElement = None

 self.moveElement = False

 self.deleteElement = True

 self.rotateElement = False

 self.modifyElement = False

 elif f is "rotate":

 self.selectedElement = None

 self.moveElement = False

 self.deleteElement = False

 self.rotateElement = True

 self.modifyElement = False

 elif f is "draw":

 self.moveElement = False

 self.deleteElement = False

 self.rotateElement = False

 self.modifyElement = False

 elif f is "cursor":

 self.selectedElement = None

 self.moveElement = False

 self.deleteElement = False

 self.rotateElement = False

 self.modifyElement = True

 elif f is None:

 self.selectedElement = None

 self.moveElement = False

 self.deleteElement = False

 self.rotateElement = False

 self.modifyElement = False

 if self.selectedElement == None:

 for btn in self.elementsButtons:

 btn.config(relief="raised", bg=self.defaultColor)

 def canvasClickDown(self,event):

 self.click = "down"

 x = self.canvas.canvasx(event.x, self.gridSpacing)

 y = self.canvas.canvasy(event.y, self.gridSpacing)

 '''

 Add circuit elements

 '''

 if self.selectedElement is ElementsEnum.Resistor: #

ADD RESISTOR

 img = self.imagesTk[ElementsEnum.Resistor]

 if not self.overlaps(x,y,img):

 r = Resistor(x, y)

 r.setId(self.canvas.create_image(x, y, image=img,

tags='image'))

 r.setLabelId(self.canvas.create_text(x, y-r.h,

text=r.labelText(), fill=self.myColor))

 self.circuit.add_element(r)

 elif self.selectedElement is ElementsEnum.Inductor: #

ADD INDUCTOR

 img = self.imagesTk[ElementsEnum.Inductor]

A-12

 if not self.overlaps(x,y,img):

 i = Inductor(x, y)

 i.setId(self.canvas.create_image(x, y, image=img,

tags='image'))

 i.setLabelId(self.canvas.create_text(x, y-i.h,

text=i.labelText(), fill=self.myColor))

 self.circuit.add_element(i)

 elif self.selectedElement is ElementsEnum.Capacitor:

ADD CAPACITOR

 img = self.imagesTk[ElementsEnum.Capacitor]

 if not self.overlaps(x,y,img):

 c = Capacitor(x, y)

 c.setId(self.canvas.create_image(x, y, image=img,

tags='image'))

 c.setLabelId(self.canvas.create_text(x, y-c.h/1.8,

text=c.labelText(), fill=self.myColor))

 self.circuit.add_element(c)

 elif self.selectedElement is ElementsEnum.VoltageSource:

ADD VOLTAGE SOURCE

 img = self.imagesTk[ElementsEnum.VoltageSource]

 if not self.overlaps(x,y,img):

 vs = VoltageSource(x, y)

 vs.setId(self.canvas.create_image(x, y, image=img,

tags='image'))

 vs.setLabelId(self.canvas.create_text(x, y-vs.h/2,

text=vs.labelText(), fill=self.myColor))

 self.circuit.add_element(vs)

 elif self.selectedElement is ElementsEnum.CurrentSource:

ADD CURRENT SOURCE

 img = self.imagesTk[ElementsEnum.CurrentSource]

 if not self.overlaps(x,y,img):

 cs = CurrentSource(x, y)

 cs.setId(self.canvas.create_image(x, y, image=img,

tags='image'))

 cs.setLabelId(self.canvas.create_text(x, y-cs.h/2,

text=cs.labelText(), fill=self.myColor))

 self.circuit.add_element(cs)

 elif self.selectedElement is ElementsEnum.Ground: #

ADD GROUND

 img = self.imagesTk[ElementsEnum.Ground]

 if not self.overlaps(x,y,img):

 g = Ground(x, y)

 g.setId(self.canvas.create_image(x, y, image=img,

tags='image'))

 self.circuit.add_element(g)

 elif self.selectedElement is ElementsEnum.Wire:

ADD WIRE

 if self.start is None:

 self.start = (x, y)

 else:

 if self.start == (x, y): #end wire when double clicked

 self.start = None

 else:

 x0 = self.start[0]

 y0 = self.start[1]

 dx = abs(x - x0) # delta x

 dy = abs(y - y0) # delta y

 if dx >= dy:

 id = self.canvas.create_line(x0, y0, x, y0,

fill="black", width=2.0, tag='wire')

 w = Wire(x0, y0, x, y0, id)

A-13

 self.circuit.add_wire(w)

 self.start = (x, y0)

 else:

 id = self.canvas.create_line(x0, y0, x0, y,

fill="black", width=2.0, tag='wire')

 w = Wire(x0, y0, x0, y, id)

 self.circuit.add_wire(w)

 self.start = (x0, y)

 self.canvas.update()

 '''

 Delete element

 '''

 if self.deleteElement is True:

 if self.canvas.find_withtag(CURRENT) and 'image' in

self.canvas.gettags(CURRENT): # Delete Element

 e = self.getCurrentElement()

 self.canvas.delete(e.getId()) #delete image

 if e.type is not ElementsEnum.Ground:

 self.canvas.delete(e.getLabelId()) #delete label

 self.circuit.remove_element(e)

 else: #

Delete Wire

 id = self.canvas.find_closest(x, y, halo=5)[0]

 if 'wire' in self.canvas.gettags(id):

 w = self.circuit.get_wire_by_id(id)

 self.circuit.remove_wire(w)

 self.canvas.delete(id)

 '''

 Rotate element

 '''

 if self.rotateElement is True:

 if self.canvas.find_withtag(CURRENT) and 'image' in

self.canvas.gettags(CURRENT):

 itemId = self.getCurrentElementID()

 e = self.getCurrentElement()

 self.canvas.delete(itemId)

 angle = e.rotate()

 e.im = ImageTk.PhotoImage(self.imagesPil[e.type].rotate(-

90*angle, expand=True))

 inst = self.canvas.create_image(e.center.x, e.center.y,

image=e.im, tags='image')

 e.setId(inst)

 self.canvas.update()

 '''

 Modify Element Attributes

 '''

 if self.modifyElement is True:

 if self.canvas.find_withtag(CURRENT) and 'image' in

self.canvas.gettags(CURRENT):

 e = self.getCurrentElement()

 if e.type is not ElementsEnum.Ground:

 top = Toplevel()

 top.title(e.name)

 top.iconbitmap(self.iconFile)

 Label(top, text="Set parameters for " +

e.name).grid(row=0, columnspan=3)

A-14

 var1 = StringVar(top, value=e.value)

 Label(top, text=e.param_name).grid(row=1, column=0)

 Entry(top, width=10, font=('Arial', 12,),

textvariable=var1).grid(row=1, column=1)

 Label(top, text=e.unit).grid(row=1, column=2)

 if e.type == ElementsEnum.CurrentSource or e.type ==

ElementsEnum.VoltageSource:

 var2 = StringVar(top, value=e.phase)

 Label(top, text="Phase (for AC)").grid(row=2,

column=0)

 Entry(top, width=10, font=('Arial', 12,),

textvariable=var2).grid(row=2, column=1)

 Label(top, text="deg").grid(row=2, column=2)

 Button(top, bg=self.myColor, fg="white", text="OK",

 command=lambda: self.setValue_CB(top, e,

var1.get(), var2.get())).grid(row=3, columnspan=3, pady=10)

 else:

 Button(top, bg=self.myColor, fg="white", text="OK",

 command=lambda: self.setValue_CB(top, e,

var1.get())).grid(row=2, columnspan=3, pady=10)

 self.canvas.update()

 def canvasClickUp(self,event):

 self.click = "up"

 self.xold = None # reset the line when you let go of the

button

 self.yold = None

 if self.oldItem is not None:

 self.canvas.delete(self.oldItem)

 if self.newItem:

 self.canvas.delete(self.newItem)

 self.newItem = None

 self.oldItem = None

 self.canvas.update()

 def canvasMotion(self,event):

 '''

 DRAG

 '''

 if self.click == "down":

 if self.xold is None and self.yold is None:

 x2 = self.canvas.canvasx(event.x, self.gridSpacing)

 y2 = self.canvas.canvasx(event.y, self.gridSpacing)

 x1 = x2

 y1 = y2

 else:

 x1 = self.canvas.canvasx(self.xold, self.gridSpacing)

#old positions of cursor

 y1 = self.canvas.canvasx(self.yold, self.gridSpacing)

 x2 = self.canvas.canvasx(event.x, self.gridSpacing)

#new positions of cursor

 y2 = self.canvas.canvasx(event.y, self.gridSpacing)

 '''

 Move element

 '''

 if self.moveElement is True:

 if self.canvas.find_withtag(CURRENT) and 'image' in

self.canvas.gettags(CURRENT):

A-15

 newX = x2 - x1 #deplasament

 newY = y2 - y1

 e = self.getCurrentElement()

 self.canvas.move(e.getId(), newX, newY)

 if e.type is not ElementsEnum.Ground:

 self.canvas.move(e.getLabelId(), newX, newY)

 xy = self.canvas.coords(CURRENT)

 e.move(xy[0], xy[1])

 self.canvas.update()

 '''

 MOTION

 '''

 if self.click == "up":

 x = self.canvas.canvasx(event.x, self.gridSpacing) #new

positions of cursor

 y = self.canvas.canvasy(event.y, self.gridSpacing)

 if self.selectedElement is ElementsEnum.Resistor:

RESISTOR

 img = self.imagesTk[ElementsEnum.Resistor]

 if not self.overlaps(x,y,img):

 self.oldItem = self.newItem

 self.newItem = self.canvas.create_image(x, y,

image=img, tags='image')

 self.canvas.delete(self.oldItem)

 elif self.selectedElement is ElementsEnum.Inductor:

INDUCTOR

 img = self.imagesTk[ElementsEnum.Inductor]

 if not self.overlaps(x,y,img):

 self.oldItem = self.newItem

 self.newItem = self.canvas.create_image(x, y,

image=img, tags='image')

 self.canvas.delete(self.oldItem)

 elif self.selectedElement is ElementsEnum.Capacitor:

CAPACITOR

 img = self.imagesTk[ElementsEnum.Capacitor]

 if not self.overlaps(x,y,img):

 self.oldItem = self.newItem

 self.newItem = self.canvas.create_image(x, y,

image=img, tags='image')

 self.canvas.delete(self.oldItem)

 elif self.selectedElement is ElementsEnum.VoltageSource:

VOLTAGE SOURCE

 img = self.imagesTk[ElementsEnum.VoltageSource]

 if not self.overlaps(x,y,img):

 self.oldItem = self.newItem

 self.newItem = self.canvas.create_image(x, y,

image=img, tags='image')

 self.canvas.delete(self.oldItem)

 elif self.selectedElement is ElementsEnum.CurrentSource:

CURRENT SOURCE

 img = self.imagesTk[ElementsEnum.CurrentSource]

 if not self.overlaps(x,y,img):

 self.oldItem = self.newItem

 self.newItem = self.canvas.create_image(x, y,

image=img, tags='image')

 self.canvas.delete(self.oldItem)

 elif self.selectedElement is ElementsEnum.Ground:

GROUND

 img = self.imagesTk[ElementsEnum.Ground]

A-16

 if not self.overlaps(x,y,img):

 self.oldItem = self.newItem

 self.newItem = self.canvas.create_image(x, y,

image=img, tags='image')

 self.canvas.delete(self.oldItem)

 elif self.selectedElement is ElementsEnum.Wire:

WIRE

 self.oldItem = self.newItem

 if self.start is not None:

 x0 = self.start[0]

 y0 = self.start[1]

 dx = abs(x - x0) # delta x

 dy = abs(y - y0) # delta y

 if dx >= dy:

 self.newItem = self.canvas.create_line(x0, y0, x,

y0, fill="black", width=2.0)

 else:

 self.newItem = self.canvas.create_line(x0, y0, x0,

y, fill="black", width=2.0)

 self.canvas.delete(self.oldItem)

 self.canvas.update()

 self.xold = event.x

 self.yold = event.y

 def canvasRightClickDown(self, event):

 pass

 def getCurrentElementID(self):

 itemId = self.canvas.find_withtag(CURRENT)[0]

 return itemId

 def getCurrentElement(self):

 itemId = self.getCurrentElementID()

 return self.circuit.get_element_by_id(itemId)

 def getCurrentWire(self):

 itemId = self.getCurrentElementID()

 return self.circuit.get_wire_by_id(itemId)

 def overlaps(self, x, y, img):

 h = img.height()

 w = img.width()

 x1 = x-w/2

 y1 = y-h/2

 x2 = x+w/2

 y2 = y+h/2

 canvas_w = self.canvas_width_total

 canvas_h = self.canvas_height_total

 if x1 <= 1 or y1 <= 1 or x2 >= canvas_w or y2 >= canvas_h:

#image is inside canvas

 self.canvas.delete(self.newItem)

 return True

 for e in self.circuit.elements:

 if e.isOverlapping(x1, y1, x2, y2):

 self.canvas.delete(self.oldItem)

 return True

A-17

 return False

 def drawFromFile(self):

 for e in self.circuit.elements:

 img = self.imagesTk[e.type]

 if e.rotated == 0:

 e.setId(self.canvas.create_image(e.center.x, e.center.y,

image=img, tags='image'))

 else:

 angle = e.rotated

 e.im = ImageTk.PhotoImage(self.imagesPil[e.type].rotate(-

90*angle, expand=True))

 e.setId(self.canvas.create_image(e.center.x, e.center.y,

image=e.im, tags='image'))

 self.canvas.update()

 if e.type is not ElementsEnum.Ground:

 if e.type is ElementsEnum.Resistor or e.type is

ElementsEnum.Inductor:

 e.setLabelId(self.canvas.create_text(e.center.x,

e.center.y-e.h, text=e.labelText(), fill=self.myColor))

 else:

 e.setLabelId(self.canvas.create_text(e.center.x,

e.center.y-e.h/2, text=e.labelText(), fill=self.myColor))

 for w in self.circuit.wires:

 w.id = self.canvas.create_line(w.start.x, w.start.y, w.end.x,

w.end.y, fill="black", width=2.0, tag='wire')

if __name__ == "__main__":

 app = GUI(None)

 app.title('CIRCUS')

 app.iconbitmap(app.iconFile)

 app.mainloop()

elements.py

import global_var

class ElementsEnum:

 Resistor, Inductor, Capacitor, VoltageSource, CurrentSource, Ground,

Wire = range(7)

class UnitEnum:

 Ohm = u"\u03A9hm" #Ohm

 Henry = "Henry"

 Farad = "Farad"

 Volt = "Volt"

 Ampere = "Ampere"

class ParamEnum:

 Resistance = "Resistance"

 Inductance = "Inductance"

 Capacity = "Capacity"

 RMSvoltage = "RMS Voltage"

 RMScurrent = "RMS Current"

A-18

class Element(object):

 def __init__(self, x, y):

 self.center = Point(x,y)

 self.rotated = 0 # 0 = 0deg, 1 = 90deg, 2 = 180deg, 3 = 270deg

clockwise

 self.im = None # attribute used as workaround to save rotated

image, avoid garbage collector bug in PhotoImage

 self.nodeLeft = None

 self.nodeRight = None

 self.value = '0'

 self.branch = 0

 def setValue(self, v):

 self.value = v

 def setId(self, i):

 self.id = i

 def getId(self):

 return self.id

 def setLabelId(self, i):

 self.labelId = i

 def getLabelId(self):

 return self.labelId

 def labelText(self):

 return self.name + " - " + self.value + " " + self.unit[0]

 def isOverlapping(self, x1, y1, x2, y2):

 if self.x1 < x2 and self.x2 > x1 and self.y1 < y2 and self.y2 > y1:

 return True

 else:

 return False

 def update(self):

 if self.rotated is 0 or self.rotated is 2:

 self.x1 = self.center.x - self.w / 2

 self.y1 = self.center.y - self.h / 2

 self.x2 = self.center.x + self.w / 2

 self.y2 = self.center.y + self.h / 2

 elif self.rotated is 1 or self.rotated is 3:

 self.x1 = self.center.x - self.h / 2

 self.y1 = self.center.y - self.w / 2

 self.x2 = self.center.x + self.h / 2

 self.y2 = self.center.y + self.w / 2

 if self.type is not ElementsEnum.Ground:

 if self.rotated is 0:

 self.terminalLeft = TerminalPoint(self.center.x - self.w /

2, self.center.y, self, 'left')

 self.terminalRight = TerminalPoint(self.center.x + self.w /

2, self.center.y, self, 'right')

 elif self.rotated is 1:

 self.terminalLeft = TerminalPoint(self.center.x,

self.center.y - self.w / 2, self, 'left')

 self.terminalRight = TerminalPoint(self.center.x,

self.center.y + self.w / 2, self, 'right')

A-19

 elif self.rotated is 2:

 self.terminalLeft = TerminalPoint(self.center.x + self.w /

2, self.center.y, self, 'left')

 self.terminalRight = TerminalPoint(self.center.x - self.w /

2, self.center.y, self, 'right')

 elif self.rotated is 3:

 self.terminalLeft = TerminalPoint(self.center.x,

self.center.y + self.w / 2, self, 'left')

 self.terminalRight = TerminalPoint(self.center.x,

self.center.y - self.w / 2, self, 'right')

 else:

 if self.rotated is 0:

 self.terminalLeft = TerminalPoint(self.center.x,

self.center.y - self.h / 2, self, 'left')

 elif self.rotated is 1:

 self.terminalLeft = TerminalPoint(self.center.x + self.h /

2, self.center.y, self, 'left')

 elif self.rotated is 2:

 self.terminalLeft = TerminalPoint(self.center.x,

self.center.y + self.h / 2, self, 'left')

 elif self.rotated is 3:

 self.terminalLeft = TerminalPoint(self.center.x - self.h /

2, self.center.y, self, 'left')

 def printElement(self):

 print self.name, ": between ", self.terminalLeft, " and ",

self.terminalRight

 def printToFile(self):

 if self.type is ElementsEnum.Resistor: id = "R"

 elif self.type is ElementsEnum.Inductor: id = "L"

 elif self.type is ElementsEnum.Capacitor: id = "C"

 elif self.type is ElementsEnum.VoltageSource: id = "V"

 elif self.type is ElementsEnum.CurrentSource: id = "I"

 elif self.type is ElementsEnum.Ground: id = "G"

 return id + " " + str(self.center.x) + " " + str(self.center.y) + "

" + str(self.rotated) + " " + str(self.value) + " " + self.name

class Resistor(Element):

 imgFile = "images/resistor.png"

 w = 80

 h = 18

 type = ElementsEnum.Resistor

 code = 3

 unit = UnitEnum.Ohm

 param_name = ParamEnum.Resistance

 index = 0

 def __init__(self, x, y):

 super(Resistor, self).__init__(x,y)

 self.terminalLeft = TerminalPoint(x - self.w / 2, y, self, 'left')

 self.terminalRight = TerminalPoint(x + self.w / 2, y, self,

'right')

A-20

 Resistor.index += 1

 self.name = "R" + str(Resistor.index)

 # edges

 self.x1 = self.center.x - self.w / 2

 self.y1 = self.center.y - self.h / 2

 self.x2 = self.center.x + self.w / 2

 self.y2 = self.center.y + self.h / 2

 self.value = "1000"

 def rotate(self):

 self.rotated = (self.rotated + 1) % 4

 self.update()

 return self.rotated

 def move(self, x, y):

 self.center = Point(x,y)

 self.update()

class Inductor(Element):

 imgFile = "images/inductor.png"

 w = 80

 h = 18

 type = ElementsEnum.Inductor

 code = 4

 unit = UnitEnum.Henry

 param_name = ParamEnum.Inductance

 index = 0

 def __init__(self, x, y):

 super(Inductor, self).__init__(x,y)

 self.terminalLeft = TerminalPoint(x - self.w / 2, y, self, 'left')

 self.terminalRight = TerminalPoint(x + self.w / 2, y, self,

'right')

 Inductor.index += 1

 self.name = "L" + str(Inductor.index)

 # edges

 self.x1 = self.center.x - self.w / 2

 self.y1 = self.center.y - self.h / 2

 self.x2 = self.center.x + self.w / 2

 self.y2 = self.center.y + self.h / 2

 self.value = "0.1"

 def rotate(self):

 self.rotated = (self.rotated + 1) % 4

 self.update()

 return self.rotated

 def move(self, x, y):

 self.center = Point(x, y)

 self.update()

A-21

class Capacitor(Element):

 imgFile = "images/capacitor.png"

 w = 60

 h = 40

 type = ElementsEnum.Capacitor

 code = 2

 unit = UnitEnum.Farad

 param_name = ParamEnum.Capacity

 index = 0

 def __init__(self, x, y):

 super(Capacitor, self).__init__(x,y)

 self.terminalLeft = TerminalPoint(x - self.w / 2, y, self, 'left')

 self.terminalRight = TerminalPoint(x + self.w / 2, y, self,

'right')

 Capacitor.index += 1

 self.name = "C" + str(Capacitor.index)

 # edges

 self.x1 = self.center.x - self.w / 2

 self.y1 = self.center.y - self.h / 2

 self.x2 = self.center.x + self.w / 2

 self.y2 = self.center.y + self.h / 2

 self.value = "1e-6"

 def rotate(self):

 self.rotated = (self.rotated + 1) % 4

 self.update()

 return self.rotated

 def move(self, x, y):

 self.center = Point(x, y)

 self.update()

class VoltageSource(Element):

 imgFile = "images/voltage_source.png"

 w = 60

 h = 60

 type = ElementsEnum.VoltageSource

 code = 1

 unit = UnitEnum.Volt

 param_name = ParamEnum.RMSvoltage

 index = 0

 def __init__(self, x, y):

A-22

 super(VoltageSource, self).__init__(x,y)

 self.terminalLeft = TerminalPoint(x - self.w / 2, y, self, 'left')

 self.terminalRight = TerminalPoint(x + self.w / 2, y, self,

'right')

 VoltageSource.index += 1

 self.name = "V" + str(VoltageSource.index)

 # edges

 self.x1 = self.center.x - self.w / 2

 self.y1 = self.center.y - self.h / 2

 self.x2 = self.center.x + self.w / 2

 self.y2 = self.center.y + self.h / 2

 self.value = "1"

 self.phase = '0'

 def rotate(self):

 self.rotated = (self.rotated + 1) % 4

 self.update()

 return self.rotated

 def move(self, x, y):

 self.center = Point(x,y)

 self.update()

class CurrentSource(Element):

 imgFile = "images/current_source.png"

 w = 60

 h = 60

 type = ElementsEnum.CurrentSource

 code = 5

 unit = UnitEnum.Ampere

 param_name = ParamEnum.RMScurrent

 index = 0

 def __init__(self, x, y):

 super(CurrentSource, self).__init__(x,y)

 self.terminalLeft = TerminalPoint(x - self.w / 2, y, self, 'left')

 self.terminalRight = TerminalPoint(x + self.w / 2, y, self,

'right')

 CurrentSource.index += 1

 self.name = "I" + str(CurrentSource.index)

 # edges

 self.x1 = self.center.x - self.w / 2

 self.y1 = self.center.y - self.h / 2

 self.x2 = self.center.x + self.w / 2

 self.y2 = self.center.y + self.h / 2

 self.value = "0"

 self.phase = '0'

 def rotate(self):

 self.rotated = (self.rotated + 1) % 4

A-23

 self.update()

 return self.rotated

 def move(self, x, y):

 self.center = Point(x,y)

 self.update()

class Ground(Element):

 imgFile = "images/ground.png"

 w = 40

 h = 40

 type = ElementsEnum.Ground

 unit = " "

 nodeLeft = "N0"

 def __init__(self, x, y):

 super(Ground, self).__init__(x,y)

 self.terminalLeft = TerminalPoint(x, y - self.h / 2, self, 'left')

 self.terminalLeft.node = "N0"

 self.terminalRight = None

 self.name = "GND"

 # edges

 self.x1 = self.center.x - self.w / 2

 self.y1 = self.center.y - self.h / 2

 self.x2 = self.center.x + self.w / 2

 self.y2 = self.center.y + self.h / 2

 def rotate(self):

 self.rotated = (self.rotated + 1) % 4

 self.update()

 return self.rotated

 def move(self, x, y):

 self.center = Point(x,y)

 self.update()

class Wire(object):

 type = ElementsEnum.Wire

 index = 0

 def __init__(self, x_start, y_start, x_end, y_end, id=0):

 self.start = Point(x_start, y_start)

 self.end = Point(x_end, y_end)

 self.id = id

 Wire.index += 1

 self.name = "W" + str(Wire.index)

 self.connectedTerminals = []

 self.connectedWires = []

 self.visited = False

 def intersection(self, w):

 left = max(min(self.start.x, self.end.x), min(w.start.x, w.end.x))

 right = min(max(self.start.x, self.end.x), max(w.start.x, w.end.x))

A-24

 top = max(min(self.start.y, self.end.y), min(w.start.y, w.end.y))

 bottom = min(max(self.start.y, self.end.y), max(w.start.y,

w.end.y))

 if top > bottom or left > right:

 return False #('NO INTERSECTION',list())

 if (top,left) == (bottom,right):

 return Point(left,top) #('POINT

INTERSECTION',list((left,top)))

 return Point(left, bottom) #('SEGMENT INTERSECTION',

list((left,bottom,right,top)))

 def dfs(self):

 for w in self.connectedWires:

 if w.visited is False:

 w.visited = True

 w.getNameFrom(self)

 w.dfs()

 def setConnectedWires(self, wireList):

 for w in wireList:

 if self.intersection(w):

 self.connectedWires.append(w)

 def addTerminal(self, t, isGround=False):

 if t not in self.connectedTerminals:

 if isGround:

 self.connectedTerminals.insert(0, t)

 else:

 self.connectedTerminals.append(t)

 def importTerminals(self, w):

 for t in w.connectedTerminals:

 if t not in self.connectedTerminals:

 if t.element.type == ElementsEnum.Ground:

 self.connectedTerminals.insert(0,t)

 else:

 self.connectedTerminals.append(t)

 def setNodes(self):

 for i in range(len(self.connectedTerminals)):

 for j in range(i + 1, len(self.connectedTerminals)):

 t1 = self.connectedTerminals[i]

 t2 = self.connectedTerminals[j]

 t1.setNode(t2)

 def containsPoint(self, p):

 crossproduct = (p.y - self.start.y) * (self.end.x - self.start.x) -

(p.x - self.start.x) * (self.end.y - self.start.y)

 if abs(crossproduct) != 0 :

 return False

 dotproduct = (p.x - self.start.x) * (self.end.x - self.start.x) +

(p.y - self.start.y)*(self.end.y - self.start.y)

 if dotproduct < 0 :

 return False

 squaredlengthba = (self.end.x - self.start.x)*(self.end.x -

self.start.x) + (self.end.y - self.start.y)*(self.end.y - self.start.y)

 if dotproduct > squaredlengthba:

 return False

 return True

A-25

 def setId(self, i):

 self.id = i

 def getId(self):

 return self.id

 def getNameFrom(self, w):

 self.name = w.name

 def printWire(self):

 print self.name, ": "

 for t in self.connectedTerminals:

 print "\t", t.element.name, t.position

 def printToFile(self):

 return "W " + str(self.start.x) + " " + str(self.start.y) + " " +

str(self.end.x) + " " + str(self.end.y)

class Point(object):

 def __init__(self, x, y):

 self.x = x

 self.y = y

 def equal(self, p):

 if p.x == self.x and p.y == self.y:

 return True

 else:

 return False

 def setCoords(self, x, y):

 self.x = x

 self.y = y

 def getCoords(self):

 return self.x, self.y

 def getX(self):

 return self.x

 def getY(self):

 return self.y

 def __str__(self):

 return "(" + str(self.x) + ", " + str(self.y) + ")"

class TerminalPoint(Point):

 def __init__(self, x, y, e, pos):

 super(TerminalPoint, self).__init__(x, y)

 self.element = e

 self.position = pos # 'left' or 'right'

 self.node = None

 def setNode(self, t):

 if self.element.type is ElementsEnum.Ground:

 t.node = 'N0'

 elif t.element.type is ElementsEnum.Ground:

A-26

 self.node = 'N0'

 elif self.node is None:

 if t.node is None:

 global_var.nodeIndex += 1

 self.node = "N" + str(global_var.nodeIndex)

 t.node = "N" + str(global_var.nodeIndex)

 else:

 self.node = t.node

 else:

 t.node = self.node

 def clearNode(self):

 node = None

 def __str__(self):

 return str(self.node)

circuit.py

from elements import *

import global_var

import matlab.engine

matlab_engine = matlab.engine.start_matlab()

class Circuit(object):

 def __init__(self):

 self.elements = []

 self.wires = []

 self.newWires = []

 self.terminals = []

 self.regime = "dc"

 self.startFreq = 0

 self.endFreq = 0

 self.intPoints = 0

 self.number_of_branches = 0

 self.branch_elements = []

 self.currents = []

 self.currents_phases = []

 self.voltages = []

 self.voltages_phases = []

 def clear_circuit(self):

 self.elements[:] = []

 self.wires[:] = []

 self.newWires[:] = []

 self.terminals[:] = []

 self.number_of_branches = 0

 self.branch_elements[:] = []

 self.currents = []

 self.currents_phases = []

A-27

 self.voltages = []

 self.voltages_phases = []

 global_var.nodeIndex = 0

 def process_wires(self):

 for w in self.wires: # for every wire

 w.setConnectedWires(self.wires) # compute list of

directly connected wires

 for e in self.elements: # and list of directly

connected terminals

 if w.start.equal(e.terminalLeft) or

w.end.equal(e.terminalLeft) or w.containsPoint(e.terminalLeft):

 if e.type is ElementsEnum.Ground:

 w.addTerminal(e.terminalLeft, True)

 else:

 w.addTerminal(e.terminalLeft)

 if e.type is not ElementsEnum.Ground:

 if w.start.equal(e.terminalRight) or

w.end.equal(e.terminalRight) or w.containsPoint(e.terminalRight):

 w.addTerminal(e.terminalRight)

 for w in self.wires: # clear visited

 w.visited = False

 for w in self.wires: # dfs to rename all connected wires

 if w.visited is False:

 w.visited = True

 w.dfs()

 for i in range(len(self.wires)): # compute

indirectly connected terminals

 for j in range(i + 1, len(self.wires)):

 w1 = self.wires[i]

 w2 = self.wires[j]

 if w1.name == w2.name:

 w1.importTerminals(w2)

 w2.importTerminals(w1)

 self.newWires = list(self.wires) # unify wires,

remove duplicates

 for i in range(len(self.wires)):

 for j in range(i + 1, len(self.wires)):

 w1 = self.wires[i]

 w2 = self.wires[j]

 if w1.name == w2.name and w2 in self.newWires:

 self.newWires.remove(w2)

 def process_terminals(self):

 for w in self.newWires:

 w.setNodes()

 self.terminals = []

 for e in self.elements:

 if e.terminalLeft not in self.terminals:

 if e.type is ElementsEnum.Ground:

 self.terminals.insert(0, e.terminalLeft)

 else:

 self.terminals.append(e.terminalLeft)

A-28

 if e.terminalRight not in self.terminals and e.type is not

ElementsEnum.Ground:

 self.terminals.append(e.terminalRight)

 for i in range(len(self.terminals)):

 for j in range(i + 1, len(self.terminals)):

 t1 = self.terminals[i]

 t2 = self.terminals[j]

 if t1.equal(t2):

 t1.setNode(t2)

 def add_element(self, e):

 self.elements.append(e)

 def remove_element(self, e):

 self.elements.remove(e)

 #self.terminals[:] = [t for t in self.terminals if t.element is not

e]

 def add_wire(self, e):

 self.wires.append(e)

 def remove_wire(self, e):

 self.wires.remove(e)

 def print_elements(self):

 print "elements:"

 for e in self.elements:

 e.printElement()

 print "wires:"

 for w in self.newWires:

 w.printWire()

 def get_element_by_name(self, name):

 for e in self.elements:

 if e.name == name:

 return e

 def get_element_by_id(self, id):

 result = None

 for e in self.elements:

 if e.getId() == id:

 result = e

 return result

 def get_wire_by_id(self, id):

 result = None

 for w in self.wires:

 if w.getId() == id:

 result = w

 return result

 def loadFromFile(self, lines):

 for line in lines:

 tokens = line.split()

 id = tokens[0]

 if id is "W":

 x1 = float(tokens[1])

 y1 = float(tokens[2])

 x2 = float(tokens[3])

 y2 = float(tokens[4])

A-29

 w = Wire(x1, y1, x2, y2)

 self.add_wire(w)

 else:

 x = float(tokens[1])

 y = float(tokens[2])

 rotated = int(tokens[3])

 value = tokens[4]

 name = tokens[5]

 if id is "R":

 e = Resistor(x,y)

 e.value = value

 e.name = name

 elif id is "L":

 e = Inductor(x,y)

 e.value = value

 e.name = name

 elif id is "C":

 e = Capacitor(x,y)

 e.value = value

 e.name = name

 elif id is "V":

 e = VoltageSource(x,y)

 e.value = value

 e.name = name

 elif id is "I":

 e = CurrentSource(x,y)

 e.value = value

 e.name = name

 elif id is "G":

 e = Ground(x,y)

 e.value = value

 e.name = name

 for rot in range(rotated):

 e.rotate()

 self.add_element(e)

 def run_interpreter(self):

 self.process_wires()

 self.process_terminals()

 def run_matlab(self):

 branch = 0

 input_matrix = []

 for e in self.elements:

 if e.type is not ElementsEnum.Ground:

 if e.terminalLeft.node is None or e.terminalRight.node is

None:

 raise Exception('\n\nERROR: Be aware of floating

terminals!')

 branch += 1

 e.branch = branch

 N_initial = float(e.terminalLeft.node[1])

 N_final = float(e.terminalRight.node[1])

 param1 = float(e.value)

 if self.regime == "ac" and (e.type ==

ElementsEnum.VoltageSource

 or e.type ==

ElementsEnum.CurrentSource):

 param2 = float(e.phase)

 else:

 param2 = 0

A-30

 line = [e.code, branch, N_initial, N_final, param1, param2]

 input_matrix.append(line)

 self.number_of_branches = branch

 if self.regime == "ac":

 self.startFreq = float(self.startFreq)

 self.endFreq = float(self.endFreq)

 self.intPoints = float(self.intPoints)

 input_matrix.append([11, self.startFreq, self.endFreq,

self.intPoints, 0, 0]) # frequencies in AC

 else:

 input_matrix.append([0, 0, 0, 0, 0, 0]) # no frequencies

in DC

 input_matrix_matlab = matlab.double(input_matrix)

 with open("input_matrix.txt", 'w') as f:

 f.writelines('\t'.join(str(j) for j in i) + '\n' for i in

input_matrix)

 self.branch_elements = list(self.elements)

 grounds = []

 for e in self.branch_elements:

 if e.type == ElementsEnum.Ground:

 grounds.append(e)

 for g in grounds:

 self.branch_elements.remove(g)

 if self.regime == "dc":

DC

 I_lat, U_lat, P_ced, P_cons =

matlab_engine.Analysis_DC(input_matrix_matlab, nargout=4)

 self.currents = I_lat

 self.voltages = U_lat

 elif self.regime == "ac":

 if self.endFreq == 0 and self.intPoints == 0:

AC with one frequency

 I_ef, I_faza, U_ef, U_faza =

matlab_engine.Analysis_AC_1f(input_matrix_matlab, nargout=4)

 self.currents = I_ef[0]

 self.currents_phases = I_faza[0]

 self.voltages = U_ef[0]

 self.voltages_phases = U_faza[0]

 else:

AC with range of frequencies

 I_ef, I_faza, U_ef, U_faza, freq_plot, I_ef_plot,

I_faza_plot, U_ef_plot, U_faza_plot \

 = matlab_engine.Analysis_AC_3f(input_matrix_matlab,

nargout=9)

 self.currents = I_ef[0]

 self.currents_phases = I_faza[0]

 self.voltages = U_ef[0]

 self.voltages_phases = U_faza[0]

 #info for plotting

 self.freq_plot = freq_plot

 self.I_ef_plot = I_ef_plot

 self.I_faza_plot = I_faza_plot

 self.U_ef_plot = U_ef_plot

 self.U_faza_plot = U_faza_plot

A-31

Analysis_AC_3f.m

function

[I_efectiv,I_faza,U_efectiv,U_faza,freq,Branch_currents_RMS,Branch_currents

_PHASE,Branch_voltages_RMS,Branch_voltages_PHASE]=Analysis_AC_3f(mdg);

cod_E=1;

cod_C=2;

cod_R=3;

cod_L=4;

cod_J=5;

cod_M=10;

cod_f=11;

Types=[];

for k=1:length(mdg(:,1))

 if mdg(k,1)==cod_E

 Types=[Types;'E'];

 elseif mdg(k,1)==cod_C

 Types=[Types;'C'];

 elseif mdg(k,1)==cod_R

 Types=[Types;'R'];

 elseif mdg(k,1)==cod_L

 Types=[Types;'L'];

 elseif mdg(k,1)==cod_J

 Types=[Types;'J'];

 elseif mdg(k,1)==cod_M

 Types=[Types;'M'];

 elseif mdg(k,1)==cod_f

 Types=[Types;'f'];

 end

end

Values=mdg; Values(:,1)=[];

% Generam, structuri de date care contin toata informatia:

% "mutual"; "branch"

branch=[];

for k=1:length(Types)

 if Types(k)=='f';

 if Values(k,2)==0

 disp('AC Analysis performed at one frequency only')

 f=Values(k,1); % Frecventa de analiza

 else

 f(1)=Values(k,1); % Frecventa initiala

 f(2)=Values(k,2); % Frecventa finala

 f(3)=Values(k,3); % Numar de puncte intermediare

 end

 elseif Types(k)=='E';

 p=Values(k,1);

 branch(p).element=Types(k);

 branch(p).cod=cod_E;

 branch(p).nodin=Values(k,2);

 branch(p).nodfin=Values(k,3);

 branch(p).valoare(1)=Values(k,4);

 branch(p).valoare(2)=Values(k,5);

 elseif Types(k)=='C';

 p=Values(k,1);

 branch(p).element=Types(k);

A-32

 branch(p).cod=cod_C;

 branch(p).nodin=Values(k,2);

 branch(p).nodfin=Values(k,3);

 branch(p).valoare(1)=Values(k,4);

 elseif Types(k)=='R';

 p=Values(k,1);

 branch(p).element=Types(k);

 branch(p).cod=cod_R;

 branch(p).nodin=Values(k,2);

 branch(p).nodfin=Values(k,3);

 branch(p).valoare(1)=Values(k,4);

 elseif Types(k)=='L';

 p=Values(k,1);

 branch(p).element=Types(k);

 branch(p).cod=cod_L;

 branch(p).nodin=Values(k,2);

 branch(p).nodfin=Values(k,3);

 branch(p).valoare(1)=Values(k,4);

 elseif Types(k)=='J';

 p=Values(k,1);

 branch(p).element=Types(k);

 branch(p).cod=cod_J;

 branch(p).nodin=Values(k,2);

 branch(p).nodfin=Values(k,3);

 branch(p).valoare(1)=Values(k,4);

 branch(p).valoare(2)=Values(k,5);

 end

end

mutual=[];

m=0;

for k=1:length(Types)

 if Types(k)=='M';

 m=m+1;

 mutual(m).bobina_1=Values(k,1);

 mutual(m).bobina_2=Values(k,2);

 mutual(m).valoare=Values(k,3)*...

 sqrt(branch(mutual(m).bobina_1).valoare*...

 branch(mutual(m).bobina_2).valoare); % Inductivitatea mutula

 end

end

% Numarul de laturi

l=length(branch);

% Numarul de noduri

n=1+max([branch.nodin, branch.nodfin]);

% Construirea matricei laturi-noduri

a=zeros(n,l);

for k=1:l

 a(branch(k).nodin+1,k)=1;

 a(branch(k).nodfin+1,k)=-1;

end

% Matricea redusa laturi-noduri (se elimina linia

% corespunzatoiare nodului "0")

a=a(2:n,:);

% Ordonarea matricei laturi-noduri prin permutari intre coloane

% in sensul crescator al codurilor de element

[codes,order]=sort([branch.cod]);

ao=a(:,order);

% Arborele normal

[g,indep]=rref(ao);

A-33

arb=order(indep);

coarb=order;coarb(indep)=[];

if length(arb)==(n-1)

else

 % Circuitului nu i se poate asocia un arbore normal din cauza

 % unor erori de topologie

 error('TOPOLOGY ERROR: Check electrical diagram !')

end

% Verificare criterii de consistenta:

for k=arb

 if branch(k).cod==cod_J

 error('TOPOLOGY ERROR: Check the electric diagram for Current-source-

cutsets !')

 end

end

for k=coarb

 if branch(k).cod==cod_E

 error('TOPOLOGY ERROR: Check the electric diagram for Voltage-source-

loops !')

 end

end

% Verificare daca toate bobinele cuplate sunt in coarbore:

for k=1:length(mutual)

 if find(mutual(k).bobina_1==coarb)&find(mutual(k).bobina_2==coarb)

 else

 error('Not all coupled inductors are found in the cotree. The

solving method is not applicable')

 end

end

% Partitia matricei A corespunzatoare arborelui normal

ar=a(:,arb);

% Partitia corespunzatoare coarborelui

ac=a(:,coarb);

% Matricea incidentelor esentiale si partitiile ei

d=ar\ac;

% Selectia elementelor E, Za din arbore

 sE=[]; sZa=[];

 lat_E=[];lat_Za=[];

 for k=1:length(arb)

 if

branch(arb(k)).cod==cod_C|branch(arb(k)).cod==cod_R|branch(arb(k)).cod==cod

_L

 sZa=[sZa,k];

 lat_Za=[lat_Za, arb(k)];

 elseif branch(arb(k)).cod==cod_E

 sE=[sE,k];

 lat_E=[lat_E, arb(k)];

 end

 end

 % Selectia elementelor J, Zc din coarbore

 sJ=[];sZc=[];

 lat_J=[];lat_Zc=[];

 for k=1:length(coarb)

 if

branch(coarb(k)).cod==cod_C|branch(coarb(k)).cod==cod_R|branch(coarb(k)).co

d==cod_L

 sZc=[sZc,k];

 lat_Zc=[lat_Zc, coarb(k)];

 elseif branch(coarb(k)).cod==cod_J

 sJ=[sJ,k];

A-34

 lat_J=[lat_J, coarb(k)];

 end

 end

d11=d(sE,sZc);

d12=d(sE,sJ);

d21=d(sZa,sZc);

d22=d(sZa,sJ);

%%

% Trasarea caracteristicilor de frecventa

pas_f=(f(2)-f(1))/f(3);

freq=[f(1):pas_f:f(2)]';

Branch_currents=[];

Branch_voltages=[];

for k=1:f(3)+1

omega=2*pi*f(1)*k;

j=sqrt(-1);

% Matricea admitantelor ramurilor (fara mutual)

Ya=[];

for k=lat_Za

 if branch(k).cod==cod_C

 Ya=[Ya, j*omega*branch(k).valoare];

 elseif branch(k).cod==cod_R

 Ya=[Ya, 1/branch(k).valoare];

 elseif branch(k).cod==cod_L

 Ya=[Ya, 1/(j*omega*branch(k).valoare)];

 end

end

Ya=diag(Ya);

% Matricea impedantelor coardelor (fara mutual)

Zc=[];

for k=lat_Zc

 if branch(k).cod==cod_C

 Zc=[Zc, 1/(j*omega*branch(k).valoare)];

 elseif branch(k).cod==cod_R

 Zc=[Zc, branch(k).valoare];

 elseif branch(k).cod==cod_L

 Zc=[Zc, j*omega*branch(k).valoare];

 end

end

Zc=diag(Zc);

for k=1:length(mutual)

 p=find(mutual(k).bobina_1==lat_Zc);

 q=find(mutual(k).bobina_2==lat_Zc);

 Zc(p,q)=j*omega*mutual(k).valoare;

 Zc(q,p)=Zc(p,q);

end

% Vectorii surselor independente

J=[];

for k=1:length(lat_J)

 J=[J;

branch(lat_J(k)).valoare(1)*exp(j*branch(lat_J(k)).valoare(2)*pi/180)];

end

E=[];

for k=1:length(lat_E)

 E=[E; -

branch(lat_E(k)).valoare(1)*exp(j*branch(lat_E(k)).valoare(2)*pi/180)];

A-35

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Construirea modelului matematic - sistem de ec. A*X=N*S

% Matricea sistemului

M=[d21, Ya;...

 Zc, -d21'];

N=[-d22, zeros(length(lat_Za),length(lat_E));...

 zeros(length(lat_Zc),length(lat_J)), d11'];

% Solutia

x=M\(N*[J;E]);

Ic=x(1:length(lat_Zc));

Ua=x(length(lat_Zc)+1:length(lat_Zc)+length(lat_Za));

% Curentii coardelor

I_coarde=[Ic;J];

% Curentii ramurilor

I_ramuri=-d*I_coarde;

% Tensiunile ramurilor

U_ramuri=[E;Ua];

% Tensiunile coardelor

U_coarde=d'*U_ramuri;

% Curentii laturilor

I_lat=zeros(l,1);

for k=1:length(arb)

 I_lat(arb(k))=I_ramuri(k);

end

for k=1:length(coarb)

 I_lat(coarb(k))=I_coarde(k);

end

% Tensiunile laturilor

U_lat=zeros(l,1);

for k=1:length(arb)

 U_lat(arb(k))=U_ramuri(k);

end

for k=1:length(coarb)

 U_lat(coarb(k))=U_coarde(k);

end

% Memorarea solutiei

Branch_currents=[Branch_currents, I_lat];

Branch_voltages=[Branch_voltages, U_lat];

end

% Trasare caracteristici de frecventa

Branch_currents_RMS=abs(Branch_currents);

Branch_currents_PHASE=atan2(imag(Branch_currents),real(Branch_currents))*18

0/pi;

Branch_voltages_RMS=abs(Branch_voltages);

Branch_voltages_PHASE=atan2(imag(Branch_voltages),real(Branch_voltages))*18

0/pi;

%EXEMPLU DE AFISARE

% Afisarea caracteristicilor de frecventa ale curentului I3 si tensiunii

U3:

%figure;plot(freq,Branch_currents_RMS(3,:));grid

%figure;plot(freq,Branch_currents_PHASE(3,:));grid

%figure;plot(freq,Branch_voltages_RMS(3,:));grid

%figure;plot(freq,Branch_voltages_PHASE(3,:));grid

A-36

disp('Curentii laturilor:')

for k=1:l

 Vef=abs(I_lat(k));

 faza=atan2(imag(I_lat(k)),real(I_lat(k)))*180/pi;

 disp([' I',int2str(k),' = ',num2str(I_lat(k)),...

 ' ==> ',num2str(Vef),' [A] / ',num2str(faza),' [deg]'])

 I_efectiv(k)=round(Vef,4);

 I_faza(k)=round(faza,4);

end

disp(' ')

disp('Tensiunile laturilor:')

for k=1:l

 Vef=abs(U_lat(k));

 faza=atan2(imag(U_lat(k)),real(U_lat(k)))*180/pi;

 disp([' U',int2str(k),' = ',num2str(U_lat(k)),...

 ' ==> ',num2str(Vef),' [V] / ',num2str(faza),' [deg]'])

 U_efectiv(k)=round(Vef,4);

 U_faza(k)=round(faza,4);

end

