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Noise 3/19

perturbation of the signal induced by acquisition device
and conditions;

leads to unwanted variations of color, brightness and/or
contrast;

biology and medicine: complex acquisition techniques
causing many ambiguities.

Example:
microscopic imaging → long exposure time → heating of
camera → thermal noise
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Denoising 4/19

Formalisation: y = Φx

x original signal to acquire (aka ground truth)

y noisy signal acquired

Φ measurement basis or projection matrix

Denoising:

find optimal approximation x̂ of signal x from incomplete or
inexact measurements ≡ principle of Compressed Sensing
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Compressed Sensing 5/19

Principle of CS: Perfectly reconstruct a signal that is
sub-optimally (≤ 50%) sampled, but only if it is sufficiency
sparse in some domain Ψ (sparsity basis, dictionary).

Optimization problem

x̂ = arg min ‖Ψx‖0 s.t. y = Φx
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Optimization 6/19

Constraints Relaxation: L0, L1, L2 norms

L0 norm:

high computational
complexity

Matching Pursuit

L2 norm:

easy to compute

solution not sparse

Least Square Regression

L1 norm:

easier to compute
than L0

in practice gives
same solution as L0

Basis Pursuit
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Optimization 7/19

Constraints Relaxation

Constraints relaxation:

replace L0 norm with L1 norm;

suppose observation is inaccurate:
y = Φx + b, where b is additive noise such that ‖b‖2 ≤ ε.

Optimization problem

x̂ = arg min ‖Ψx‖1 s.t. ‖Φx − y‖2 ≤ ε
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Optimization 8/19

Constraints Relaxation: Total Variation norm

Property

Most images are sparse in a certain domain:

space (gradient),

frequency (wavelets, Fourier)

Constraints relaxation:

based on the sparsity of signal x in the gradient domain,
remove matrix Ψ from problem formulation by replacing
L1 norm with TV norm

‖x‖TV =
∑
p,q

√
∂hx(p, q)2 + ∂vx(p, q)2
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Optimization 9/19

Algorithms

NESTA solves the optimization problem by accelerated
gradient descent with back-propagation:

x̂ = arg min ‖x‖TV s.t. ‖Φx − y‖2 ≤ ε

FISTA minimizes the sum of two convex functions (one
smooth and one non-smooth), using fast gradient projection it
solves another definition of the same optimization problem:

x̂ = arg min ‖Φx − y‖22 + 2λ‖x‖TV

where λ (regularization) is a trade-off between fidelity to
measurements and noise sensitivity.
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Sampling 10/19

Fourier Sampling

Φ (measurement basis) =
Fourier Transform,

Note: MRI images are
acquired directly in Fourier
domain

most of spatial energy is
concentrated in the low
frequency area of the
Fourier domain (see Fig.)
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Sampling 11/19

Sampling Pattern

partially random sampling:
keep all low frequencies up to a cut-off frequency υ
randomly sample high frequencies until sub-sampling rate
τ is reached

3% - 20% Fourier coefficients ≡ 90% information spatial

τ = 10%,
υ = 30%

τ = 30%,
υ = 30%

τ = 50%,
υ = 40%
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Multiple Acquisitions and Reconstructions 12/19

Main Idea

Main idea:

in order to keep a low sampling rate, make multiple
sub-optimal acquisitions;

yk = Φky

merge reconstructions to obtain optimal solution.

x̂ = fusion(x̂k)
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Multiple Acquisitions and Reconstructions 13/19

Fusion Function

Mean:
- average of reconstruction
- smoothen contours
- x̂mean = 1

R

∑R
k=1 x̂k

Variance map:
- standard deviation of
reconstructions
- emphasize incoherences (mostly
edges)
- as weight matrix (normalized)

- σx =
√

1
R−1

∑R
k=1(x̂k − x̂mean)2

Fusion operator:
x̂ = σx ◦ y + (1− σx) ◦ x̂mean

Mean

Variance map
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Implementation 14/19

input : y, R, τ , υ, λ
output: x̂
begin

for r ← 1 to R do
mask[r ] = generateSamplingMask(τ, υ)
yi [r ] = FFTsampling(y ,mask[r ])
xi [r ] = FISTAoptimization(yi [r ], λ)

end
x̂ = fusion(xi )
return x̂

end
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Results 15/19

Similar results for lower (10%) and higher (40%) sampling rates

Noisy image Ground truth

τ = 10% (PSNR = 23,63 dB) τ = 40% (PSNR = 23,80 dB)
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Results 16/19

Regularization parameter λ very important for high levels of noise

Noisy image Ground truth

λ = 1 (PSNR = 14,46 dB) λ = 10 (PSNR = 14,77 dB)
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Conclusion 17/19

Outcome: Denoising Plugin

uses modern and acclaimed techniques
(CS, TV regularization)

accessible and user friendly (Icy and JVM)

flexible (multiple adaptable parameters)

Future work:

add more sampling patterns (Gaussian, fully-random)
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