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ABSTRACT
In this paper we introduce a new application that exploits the
emerging imaging modality of full field optical coherence to-
mography (FFOCT) as a means of optical biopsy. The objec-
tive is to build a computer-aided diagnosis (CAD) tool that
can speed up the detection of tumoral areas in skin excisions
resulting from Mohs surgery. Since there is little prior knowl-
edge about the appearance of cancer cell morphology in this
type of imagery, deep learning techniques are applied. Using
convolutional neural networks (CNN), we train a feature ex-
tractor able to find representative characteristics for FFOCT
data and a classifier that learns a generalized distribution of
the data. With a dataset of 40 high-resolution images, we ob-
tained a classification accuracy of 95.93%.

Index Terms— convolutional neural networks, non-
melanoma skin cancer, digital pathology, full field optical
coherence tomography

1. INTRODUCTION

Skin cancer is the most common human malignancy, pre-
dominantly represented by non-melanoma types with 5.4 mil-
lion cases per year, 80% of which are Basal Cell Carcino-
mas (BCC) with the majority the remaining being Squamous
Cell Carcinomas (SCC) [1]. The gold standard procedure for
treating non-melanoma skin cancer in high risk areas is Mohs
Surgery [2]. The technique involves the consecutive removal
of thin layers of skin, followed by histological preparation and
microscopical examination for tumor clearance. This process
can take up to an hour and guides further tissue extraction.
We investigate the feasibility of using a non-invasive optical
slicing modality, together with an automated diagnosis of the
cancerous areas, which would lead to speeding up the proce-
dure, consequently, improving patient comfort and physician
throughput.

Histology slides are 3 µm thick, performed at any desired
depth in the resection, and observed with high resolution mi-
croscopes. So only thin optical slicing systems which en-
sure cellular-level resolution and enough penetration depth

can compete with this standard. The technologies generally
employed in this domain are optical coherence tomography
(OCT) and confocal microscopy, while the first favors pene-
tration depth (1mm) with a low axial resolution (10 µm), the
other has a better resolution (0.8 µm) and insufficient penetra-
tion (100 µm). FFOCT relies on the same principle as classi-
cal OCT, light interferometry, but produces ”en face” slices,
instead of cross-sections. This allows for an intra-cellular res-
olution (1 µm) and sub-surface penetration (200 µm-1mm,
depending on the numerical aperture and optical properties
of the tissue). Given its specifications and resemblance with
transverse histological slices, FFOCT proves to be a powerful
technique for optical pathology [3].

There is a growing tendency for medical diagnosis appli-
cations to rely on deep learning [4], especially convolutional
neural networks (CNN) which are most suitable for image in-
puts. Their efficiency is proven by the fact that CNN archi-
tectures are winning the grand challenges in the domain: TU-
PAC16 (MICCAI), CAMELYON16-17 (ISBI), however, all
their datasets consist of bright-field whole-slide images. In
OCT imaging, deep learning is mostly used for segmentation
of the retinal layers [5]. Recently, neural networks conquered
the field of dermatology, with [6], which classifies cancerous
lesions from macro images of the skin surface. Still, to our
knowledge, there is almost no research in automatic diagnos-
ing for the FFOCT modality, including using deep learning
methods. In this work we propose exploiting FFOCT images,
as exposed in Section 2, which will be used to train a CNN,
as detailed in Section 3. The results obtained are presented in
Section 4 and the concluding remarks in Section 5.

2. DATA

2.1. Data Acquisition

Our data set consists of 40 FFOCT images of tissue excisions
obtained from Mohs surgery, biopsies and conventional exci-
sions, which were then imaged using the Light-CTTM scanner
developed by LLTech, France. The samples did not undergo
any preparation. The scanner has a resolution of 1 µm3 and a



penetration depth of 200 µm, which means reaching the level
of the dermis. Each image is a 2D transverse slice of a unique
tissue sample imaged at 20 µm below the surface. Samples
measure between 2-2.5cm2 which gives high-resolution im-
ages of around 200 Megapixels. The speed of acquisition is
1 cm2 per minute.

2.2. Data Annotation

As shown in Fig. 1 the images were manually segmented and
diagnosed by a dermatopathologist with experience with this
modality and who could access the gold standard H&E frozen
sections of the specimen for validation. The data was gath-
ered and annotated using the Cytomine [7] platform. 26% of
the total imaged area was segmented, the rest (unlabeled ar-
eas) being background or abnormal tissue (it sometimes sur-
rounds the tumors but its appearance is not relevant for either
class, it should be treated separately). The images are prepon-
derantly annotated with the normal label and only 10 images
present some cancerous areas, annotated as BCC, more pre-
cisely, only 9.5% of the annotated data is pathological. There-
fore, as it is the case of most of the medical applications, we
face the class imbalance problem, which we try to solve by
oversampling the minority class.

2.3. Data Sampling & Preprocessing

The scanner produces 16-bit DICOM images, but only 10 to
12 bits are actually used; they were converted to 8-bit JPEG
for convenience, so they can be tested with out of the box
pre-trained architectures that only accept this depth.

Speckle noise is strongly present in FFOCT images, but
proper denoising algorithms are too computationally costly
(of the order of hours) therefore, since one of the requirements
of our application is speed, we applied a 3× 3 Gaussian filter
to provide some smoothing while preserving the structures
(e.g. cancerous cell nuclei appear as dark blobs with 10 pixels
in diameter).

A constraint imposed by the computational power needed
to train artificial neural networks is its number of parameters.
This is a function of the depth (number of filters, layers) and
width (input size of the layers) of the network. To satisfy
this constraint while capturing enough context to discern nor-
mal skin structures from the cancerous cell organization, we
split the images in patches of 256× 256 pixels. With the aim
of augmenting and also balancing the data set, we oversam-
pled the patches with different step values for the two classes:
170px for the normal class, while BCC patches overlap more,
with a stride of 40px. This produces 108 082 patches: 59 112
normal and 48 970 BCC; 80% of which serve as a training set
and the rest is used for measuring the performance.

Among the popular practices in deep learning is data stan-
dardization (zero centering + normalization) which translates
into imposing the data to follow a normal distribution. This

(a) Annotated sample (green: normal, red: BCC)

(b) Normal patches: collagen, hair follicles, glands

(c) BCC patches: aggregates of cancer cells, retraction artifacts

Fig. 1. An example of image (11808 × 8352) annotated in
Cytomine and some patches (256× 256) extracted from it.

influences the robustness of the algorithm to variations in the
images caused by the acquisition conditions, for example, and
it also ensures a better convergence of the learning process.
Data standardization is done by subtracting the mean inten-
sity value over the training set and dividing by their standard
deviation. Note that the same preprocessing has to be applied
on the test data for consistency. Furthermore, some basic data
augmentation was performed, which led to doubling the train-
ing set, by adding synthetically generated images obtained
through horizontal and vertical flipping, slight rotations and
shifts.

3. METHOD

Using some popular architectures like VGG-16 [8] or Incep-
tionV3 [9], pre-trained on ImageNet database, we obtained
an accuracy of 89.30% and 90.79%, respectively. Moreover,
the overfitting phenomenon (i.e. ”memorizing” training data,
rather than learning to generalize) was quite important and
was fast to appear. We inferred that those architectures were
too deep and complex for our data distribution, therefore, data
over specification caused overfitting. However further inves-
tigation is intended. Moreover, using pre-trained networks or
even fine-tuning (i.e. continuing training) them seems inap-
propriate for our problem, since we are dealing with a new



Fig. 2. Proposed CNN architecture.

modality and one of our objectives is to discover relevant fea-
tures that characterize FFOCT images. We build and train
from scratch, a CNN that is able to learn a generalized dis-
tribution of our data, with respect to our two classes, normal
and BCC.

The proposed architecture follows the classical construc-
tion of a multi-layer CNN while having a smaller number of
parameters than state of the art architectures. Nevertheless, it
takes advantage of the ideas employed by VGG, like: 1) con-
volutional blocks: consecutive convolutional layers to cap-
ture larger input with a spare of parameters; 2) dropout layer:
a fraction of neurons is randomly removed to avoid overfit-
ting; 3) rectified linear unit (ReLU): activation function used
to speed up the computations.

We trained a 10 layer CNN (see Fig. 2) including the fea-
ture extraction part, composed of 4 convolutional blocks (with
two convolutional layers each) followed by max-pooling
and 25% dropout and a classifier consisting of two fully-
connected layers of 512 and 64 neurons, respectively, each
followed by 50% dropout, lastly, there is one output neuron
whose firing signals the classification of the input patch as
BCC or normal otherwise. The layers from the first blocks
have 32 filters and the rest have 64 filters each, the receptive
fields of the convolutions vary from 7× 7 and 5× 5 to 3× 3
as we go deeper into the network.

The network has in total 8 654 369 parameters to train,
most of them corresponding to the classifier part (i.e. fully
connected layers), while 232 417 represent the filters en-
coding the features, meaning 60× less than VGG-16. The
weights are initialized using the Glorot method [10] which
is based on the idea that the gradients of each layer should
follow more or less the same distribution at the beginning
of training and it is proven to converge faster and towards a
”better” minimum. The training process consists in minimiz-
ing the binary cross entropy loss. When computing it, class
weighting applies a higher penalization for misclassifying
cancerous class with respect to the under representation of

the minority class: 1 ÷ 1.2 (there is 1 normal sample for 1.2
cancerous samples). Learning is possible using a gradient
decent optimization algorithm, for our application Adaptive
Moment Estimation (Adam) [11] worked best. Adam is one
of the adaptive methods of gradient descent whose partic-
ularity is that they adapt the learning rate (i.e. step of the
descent) to the parameters, performing larger updates for in-
frequent parameters (i.e. the ones which were rarely updated)
and smaller updates for frequent ones. Adam also multi-
plies the learning rate by the momentum (i.e. average of the
previous gradients) providing accelerated optimization. The
mini-batch gradient descent approach is a trade-off between
computational accuracy and convergence time, so between
batch (entire dataset) and stochastic (one example at a time)
gradient descent. We chose a mini-batch of 40 samples as it
was the biggest size that respected the memory constraints.

The proposed network was implemented using Keras [12]
with Tensorflow [13] backend. Training time was about a day
(25 hours and 17 minutes) on 4 Nvidia Tesla P100 GPUs for
2000 epochs (45 seconds per epoch); an epoch represents one
forward and one backward pass over all the training examples.
However, testing a full-size image patch by patch takes up to
a few seconds and is possible on any kind of basic system
configuration.

Fig. 3. Ground truth labeling (left) and predictions (from
left to right): proposed method, InceptionV3 pre-trained,
VGG16 pre-trained, VGG16 fine-tuned (green: normal, red:
BCC).



Fig. 4. Textures maximizing activations for Conv 3 layer.

4. RESULTS

We obtained a classification accuracy of 95.93%, correspond-
ing to a sensitivity of 95.2% and 96.54% in specificity. Fig. 3
shows a comparison between the ground truth labeling and
the patches classified with our method. We notice that the
cancerous regions are coarsely detected and, interestingly, the
abnormal tissue that was unlabeled (so unknown to the net-
work during training) is classified as BCC. Note that back-
ground removal was not performed when testing, however,
the method doesn’t detect any abnormality outside the sam-
ple. There are a few misclassified solitary patches which
inspired us to impose some neighborhood relationship con-
straints in the future work. The results are still raw but they
clearly represents a promising step towards an automated seg-
mentation of FFOCT images.

However, caution should be taken with the statistical re-
sults which can be misleading in interpreting the overall ef-
ficiency of the method and its behavior with different data.
Since artificial neural networks are black-box models, gain-
ing an intuition about the reasoning performed by the net-
work is not straightforward. To do that we visualize what the
network is learning. This is possible by viewing the weights
of the neurons which correspond to the convolutional filters,
but since they are very small, the textures encoded are not
easily deductible. Still, to get the texture that a filter is re-
sponsive to, we can visualize the simulated input that would
maximize the activation of its corresponding neurons. This
is achieved by performing gradient ascent in the input space
with respect to the filter activation loss. In Fig. 4 are plotted
the patterns learned by the 3rd convolutional filter. Without
any clinical feedback from a pathologist, we deduce that they
could encode different distributions of cells and orientations
of collagen fibers, but this matter is still open for discussion.

5. CONCLUSION

In this work we trained a convolutional neural network in the
purpose of discriminating basal cell carcinoma from normal
skin. We show preliminary results that open a promising re-

search direction, which is analyzing FFOCT images with the
powerful methods of deep learning. Developing computer-
aided diagnosis tools could ease the integration of this novel
optical biopsy technology in the clinical environment by
assisting pathologists in their familiarization with the new
modality and, ultimately, it could reduce the costs and dura-
tion of certain medical procedures, like Mohs surgery.

To improve our results we will firstly need a more con-
sistent data set and also a better understanding of the deci-
sion flow of the pathologists in diagnosing the samples. This
would allow us to translate the knowledge of an expert to ar-
tificial neural networks. Additionally, we will include a 3rd

class for the unlabeled areas. For future work we also intend
to adopt a multi-scale approach, inspired by MIMO-Net [14],
for capturing a larger context and extracting specific informa-
tion at different levels of zooming.

Another idea is that, in order to accurately assess the ef-
ficiency of such a model, we need to understand the reason-
ing learned by the machine. Therefore, we are ambitiously
aiming towards demystifying artificial neural networks in the
hope of also gaining knowledge about the data set.
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