

Diana Mandache¹, Eugénie Dalimier², John R Durkin³, Claude Boccara², Jean-Christophe Olivo-Marin¹, Vannary Meas-Yedid¹ ¹ Bioimage Analysis Unit, Institut Pasteur, Paris, France ² LLTech SAS, Paris, France ³ Department of Dermatology, Drexel University College of Medicine, Philadephia, PA

Motivation	CNN	
Skin cancer is the most common human malignancy, predominantly represented by Basal Cell Carcinomas (BCC). The gold standard treatment is Mohs surgery. It consists of successive removals and histological examinations of skin layers which guide further tissue	 Architecture: 10 layers : 4 convolutional blocks (x2 layers each) + 2 fully connected layers 8.654.369 trainable parameters : 232.417 represent features encoding filters (60x less than VGG16) 	FC 1

extraction.

Our work aims to speed up the procedure by using a non-invasive optical slicing modality – Full Field Optical Coherence Tomography (FFOCT), together with an **automated diagnosis** of the cancerous areas – Convolutional Neural Networks (CNN).

This would lead to improved patient comfort and physician throughput.

Data set

- 40 FFOCT images of tissue excisions
- 10 images contain cancerous areas
- 2 classes: **normal** and **BCC**
- images are manually labeled and diagnosed by a dermatopathologist, validated with the H&E frozen sections of samples
- 74% of total imaged area is unlabeled: background and abnormal tissue (sometimes surrounds BCC, morphologically irrelevant to either class, should consider separately)

• 23% is normal skin; only 3% is tumoral \rightarrow class imbalance problem

unlabeled Inormal
BCC

- 108.082 patches = 59.112 normal + 48.970 BCC

Training:

- weights initialized with *Glorot*^[4] method : gradients of each layer follow the same initial distribution; better and faster convergence
- minimize binary cross entropy loss with Adam^[5] gradient descent on mini-batches of 40 samples over 2.000 epochs
- Adam (Adaptive Moment Estimation) : adapts the learning rate (step of descent) for each parameter according to its update frequency (e.g. larger updates for parameters which rarely change and vice-versa) while adding momentum for an accelerated optimization
- class weighting with respect to class ratio $1 \div 1,2$ higher penalization for misclassifying BCC
- trained in one day (25hrs17min, 45sec per epoch) on 4 Nvidia Tesla P100 GPUs
- coded using Keras [github.com/fchollet/keras] with Tensorflow [tensorflow.org] back-end

accuracy evolution during training

80% train set, 20% test set

Data sampling & processing

- 16-bit DICOM (10 to 12 bits used) \rightarrow 8-bit JPEG
- strong **speckle** noise \rightarrow 3x3 Gaussian filter for fast smoothing while preserving the structures
- images split into **256x256px patches** tradeoff between context capture and computational resources needed for CNN training
- class imbalance correction through patch oversampling with different step values : **170px** for normal class / **40px** for BCC
- data standardization (zero centering + normalization): robustness to variation in acquisition conditions
- data augmentation: flips, rotations, shifts

Results

Proposed CNN: prediction accuracy = **95,93%**

Out of the box models:

- *VGG16*^[6] pre-trained on *ImageNet* : *acc* = 89,30%
- *InceptionV3*^[7] pre-trained on *ImageNet* : acc = 90,79%
- early overfitting \rightarrow architectures too complex cause data over specification \rightarrow simpler architecture, trained from scratch

Discussion:

- visualize textures which are learned by the filters (gradient ascent in the input space with respect to the filter activation loss \rightarrow simulated input maximizing the activation of neurons forming that filter)
- filters could encode distributions of cell nuclei and orientations of collagen fibers
- unlabeled abnormal tissue predominantly classified as BCC

Conclusions

- promising research direction: ✓ open analyzing Full Field OCT images through deep learning
- ✓ ease the integration of a novel optical biopsy technology in the clinical environment by assisting pathologists with computer aided diagnosis (CAD) tools
- ✓ reduce the costs and duration of certain medical procedures, like Mohs surgery

Future work:

- □ collect more data
- □ consider new class : abnormal tissue
- □ understand the pathologist's diagnosis strategies and decision tree \rightarrow adapt algorithms accordingly
- □ adopt a multi-scale approach: capture different context, extract larger information at different levels of zooming
- □ "unbox" the black box understand the reasoning of the CNN \rightarrow gain knowledge about the data
- □ Dynamic Cell Imaging (DCI) FFOCT^[8] : morphologic + metabolic information on cells

An annotated sample (11.808 x 8.352) and some patches extracted from it:

- **normal** patches with skin structures like collagen, hair follicles, sebaceous glands, sweat glands
- **BCC** patches with dense cancerous cell nuclei distributions and retraction artifacts

simulated inputs that would maximize the activation of Conv_3 layer

References

- 1. E Dalimier and D Salomon, *Full-field optical coherence tomography: a new* technology for 3d high-resolution skin imaging, Dermatology, 2012.
- 2. G Litjens et al., A survey on deep learning in medical image analysis, Medical Image Analysis, 2017.
- 3. A Esteva et al., Dermatologist-level classification of skin cancer with deep neural networks, Nature Letter, 2017.
- 4. X Glorot and Y Bengio, Understanding the difficulty of training deep feedforward neural networks, PMLR, 2010.
- LLTech Light-CT™ Scanner "en face" optical slicing interferometry principle resolution: $1 \mu m^3$ (intracellular) penetration depth: **200 µm** to **1 mm** speed of acquisition: 1 cm² / min size: 310 x 360 x 700 mm (portable)

5. DP Kingma and J Ba, Adam: A method for stochastic optimization, ICLR, 2015.

- 6. K Simonyan and A Zisserman, Very deep convolutional networks for large-scale *image recognition*, arXiv, 2014.
- 7. C Szegedy et al., Rethinking the inception architecture for computer vision, CVPR, 2016.
- 8. C Apelian et al., Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis, Biomedical Optics Express, 2016.

www.lltechimaging.com