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ABSTRACT

We propose a fast aid-to-diagnosis biopsy assessment method
convenient at the point-of-care, on account of both the imag-
ing technique and the algorithm applied. The procedure im-
plies a pipeline of classification and localization of tumors
in breast cancer biopsies imaged with a recently developed
non-invasive imaging modality: Dynamic Cell Imaging (aka
Dynamic Full Field Optical Coherence Tomography). This
allows for fast and interpretable extemporaneous cancer de-
tection with high confidence; we obtained a performance of
96% classification accuracy together with a coarse localiza-
tion of tumors, even so for single isolated invasive cells.

Index Terms— dynamic full field optical coherence to-
mography, classification, segmentation, convolutional neural
network, aid to diagnosis, breast cancer

1. INTRODUCTION

Breast cancer touches 1 in 8 women worldwide, making it the
most frequent cancer in women and the second most deadly.

Standard diagnosis procedure consists in mammography
screening, where tissue of abnormal density can be suspected
through X-rays and is then biopsied and analyzed at micro-
scopic scale to be actually diagnosed. Localizing and reach-
ing the lesion is not a trivial task. The common protocol im-
plies multiple samplings (minimum 5 [1]) of the suspicious
mass to ensure correct probing for reliable diagnosis. What
is more, the false negative rate caused by poor sampling is
currently up to 2% [2].

In the eventuality of a positive diagnosis, the standard
treatment involves the surgical removal of the tumor, with
partial or total breast ablation. Even after heavy surgery, the
risk of recurrence after 5 years is above 10%, suggesting
that an imperfect removal of the tumor was performed during
surgery. Hence, there is a crucial need to encourage real-time
intraoperative assessment of the tumor margins, in order to
reduce the ablation of healthy tissue, the surgery time, and
the risk of resurgence.

The gold standard procedure for tissue analysis is histol-
ogy, it consists of fixing, slicing and Hematoxylin & Eosin

Fig. 1: Healthy breast lobule in H&E and DCI.

(H&E) staining of the sample, which is then analyzed by a
pathologist under a microscope with up to 40X magnifica-
tion. The whole procedure takes up to a couple of days. As
for its intra-operative variants, frozen section or imprint cytol-
ogy, even if they are faster ∼ 30min, they are still not efficient
enough to be widely-employed during surgery.

We propose the use of an optical sectioning solution that
offers histology-like structure appearance in minutes, without
requiring any tissue preparation. The technique is Dynamic
Cell Imaging (DCI) [3], a time-resolved variant of Full Field
Optical Coherence Tomography (FFOCT) [4], which in turn
is a en-face development of the classical OCT. While FFOCT
reveals highly backscattering elements (mostly fibrous struc-
tures), DCI captures the movement of scatterers in the cells
(presumably vesicles and mitochondria), therefore signal is
obtained only in freshly excised living tissue. Both techniques
offer an intracellular-level resolution of 1 µm, with a 10X ob-
jective, compatible with the need of clinicians. However, the
attractiveness comes from the fast acquisition, for FFOCT on
the order of seconds and DCI a couple of minutes for an av-
erage core-needle biopsy.

FFOCT and DCI could potentially reinforce extempo-
raneous margin assessment by offering a faster and simpler
imaging protocol, that would lead to improved outcome for
breast-conserving surgery.FFOCT and DCI can also help in
quality assessment of biopsies by reducing the number of
samples taken per lesion. In such a manner the surgeon or
radiologist can decide on-line, in less than 5 minutes, if there



Fig. 2: CNN architecture & 3-step workflow: i) feature extraction and classification with VGG-16 ii) Attention Map computation (offline)
with GradCAM iii) Segmentation by building a U-Net architecture having the pre-trained VGG-16 as backbone.

needs to be another incision by imaging the already excised
biopsy and quantifying the number of cells or nature of the
tissue.

A recent study [5] on 173 breast resections imaged with
FFOCT and DCI obtained minimum sensitivity and speci-
ficity over 85% from 2 breast surgeons, after a 3-hour training
by pathologists, showing promising prospects on the adoption
of these novel techniques. However, since the obtained con-
trasts are significantly different from standard histology (See
Fig. 1), FFOCT and DCI images are still difficult to interpret
by surgeons or radiologists, let alone to be adopted in cur-
rent practice. Previously, there have been endeavors on au-
tomatic detection of cancerous areas from FFOCT images, in
[6] a CNN approach reached 96% accuracy in detecting non-
melanoma skin cancer, [7] also detected skin cancer in mice
with 80% accuracy. However skin cancer is of less morpho-
logical complexity and one of the main features for diagnosis
is collagen fiber density and organization, which makes it a
very suitable application of FFOCT (and other non-invasive
optical techniques as a matter of fact). DCI, on the other
hand, produces contrast of individual cells, allowing diagnos-
ing more challenging pathologies. However, due to the nov-
elty of the technique and the difficulty to obtain ground truth,
no automatic diagnosis methods have been developed so far.

In this work we propose an aid-to-diagnosis method that
could help in training and assisting the clinicians in taking
rapid extemporaneous decision. We present a deep-learning
approach towards classifying between cancerous and normal
breast tissue from DCI images, while remaining in the scope
of interpretability and pushing the method further towards
segmentation. The method is performed on 47 samples com-
ing from a cohort of 33 patients after lumpectomy or mastec-
tomy.

2. TUMOR CLASSIFICATION
The dataset used is the product of a prior clinical study con-
ducted in Gustave Roussy cancer center to test the feasibility
of DCI-based cancer diagnosis, namely breast cancer, with

90% accuracy and a minimum of 89% sensitivity and 80%
specificity per-pathologist. From a cohort of 33 patients, there
have been obtained 47 samples issued of surgical waste from
full or partial breast ablations (34 samples containing tumor
and 13 normal tissue). As a consequence of the early stage
of the technical development process of the DCI technique
at the moment of the clinical study, only individual fields-of-
view (FOVs) have been acquired from different locations of
each sample. Each FOV has 1440 × 1440px, correspond-
ing to a physical size of 1.3 × 1.3mm. Although sufficient
to cover specific structures like lobules and ducts in their en-
tirety, a global overview of the tissue architecture (provided
by FFOCT) was needed. There was a median number of 9
FOVs per sample, ranging up to 15, resulting in a dataset of
396 total individual FOV (260 containing tumor on at least
5% of their area and 136 with no tumor). The per FOV inter-
pretation which served as ground truth was done by a pathol-
ogist trained on DCI images and having the corresponding
standard H&E slide as reference for diagnosis.

To obtain the train and test sets, we separated the sam-
ples with 80% : 20% proportionality in a random stratified
manner, meaning that the two sets were constructed to re-
spect the class distribution of the global set. This results in 37
samples in the train set (28 malignant and 9 healthy samples,
226 tumor-positive (P) and 97 tumor-negative (N) FOVs) and
the remaining 10 samples in the test set (6 malignant and 4
healthy, 39 P and 34 N FOVs).

Due to the very small and heterogeneous dataset, we
opted for a pre-trained network, namely VGG16 [8] for
its relatively small number of parameters, pre-trained on
ImageNet[9] (note that training from scratch failed to con-
verge.). Other architectures were tested, namely InceptionV3
and ResNet50 which were very fast to overfit, most likely due
to their higher number of parameters: ∼ 25M vs. ∼ 15M
for VGG16. Following the same philosophy of reducing the
number of parameters to a minimum, after the convolutional
feature extraction layers was added a Global Average Pooling
Layer (GAP)[10] which produces a feature vector of size 512



representing the average activation of each filter of the last
convolutional layer of VGG16. Intuitively, a narrow bottle-
neck forces compression therefore leading to generalization.
Another advantage of GAP is that it makes the model more
versatile in the sense that it can accept inputs of different
sizes, because its size is only dependent on the number of
filters. After pooling, the actual classifier was also kept to a
minimum of complexity with only one hidden layer of size
1024, followed by the binary output neuron with sigmoid
activation.

Here-described configuration was fine-tuned using the
Stochastic Gradient Descent (SGD) optimizer with a learning
rate of 1e−4 and 0.8 momentum by minimizing the weighted
binary cross-entropy loss on mini-batches of size 3 (dictated
by memory constraints). The weight for each class is in-
versely proportional to its frequency, resulting in wc=0 = 1.7
and wc=1 = 0.7 computed as wc = N

nclasses∗Nc
where N is

the total number of samples and Nc is the number of samples
belonging to class c. The best model was found after 104
training epochs, after which the model started to overfit.

3. CLASSIFICATION RESULTS AND
INTERPRETATION

In terms of results, we obtained : accuracy 95.89%, sensitiv-
ity 91.18% and specificity 100% (3/39 missed tumoral FOVs)
AUC 1. Aggregating the per-FOV predictions to obtain a
global per-sample diagnosis was done using the 95th quan-
tile of the FOV prediction distribution, this approach ensures
more robustness to outliers than the maximum and it is proven
by the correct classification of all the samples in the test-set.

In order to validate the presented hyperparameter selec-
tion we have performed a 5-fold cross validation with the fol-
lowing results : mean accuracy of 89±4% (sensitivity 88±4%
and specificity 86 ± 6%) and the area under the ROC curve
(AUC) of 0.92 ± 0.02 at the FOV level. Bearing in mind
that the folds where defined by sample, the number (and class
proportion) of actual images (FOVs) in train and test sets fluc-
tuates from one fold to the other, which together with the het-
erogeneous nature of the data explain the slight variation in
performance.

In a quest for interpretability and confidence in the trained
model, we worked on two approaches: visualizing the learned
features and visualizing the per-sample attention with respect
to the class. For the first endeavor, we obtain synthetic inputs
through gradient ascent by maximizing the activation of each
convolutional filter iteratively, using the method in [11], and
we obtain the textures learned from the data. See Fig. 3 for
an example of some filters of the deepest convolutional layer.
Doing so we make sure that our filters are different from the
ImageNet filters, not noisy and also true to the dataset at hand,
so indeed we can conclude that the learning has also been ex-
tended to the feature extractor, not only limited to the classi-
fier.

Fig. 3: Some learned filters (4/512) of the last convolutional layer
(whose activation maps where used to compute the attention maps)
hinting to different fiber and cell organization, including also multi-
ple cell sizes.

Fig. 4: a) crop of an image showing healthy breast lobule surrounded
by isolated infiltrating cancerous cells, correctly predicted as cancer-
ous with 97% confidence, b) tumor-positive attention map, c) tumor-
negative attention map.

The second approach consists in displaying the class
activation maps of several inputs using the GradCAM [12]
method, which reveals the ”important” areas in an input
indicating towards a certain class. The averaged gradients
flowing back from a chosen class output neuron to a previ-
ous layer (usually last convolutional layer) act as weighting
factors for each activation map, the final result being a linear
combination between the weights and filter activation maps.

This results in a coarse localization of the class presence
in the input which can serve numerous purposes, an impor-
tant one is verifying that the model is not biased (e.g. higher
importance to context, rather than the actual object of interest
or, on the other hand, a very focused attention on a small part
of the object).

Common practice is to pass the grad through a ReLU (in
other words, keep only positive values) and then scale [0, 1],
however since we deal with binary classification we also ex-
tract the (absolute value of) negative gradient too as an indi-
cator for the absence of the tumor class (i.e. healthy). scale
to [−1, 1] range with respect to the absolute maximum activa-
tion value. See Fig. 4 for an example of the positive Grad-
CAM (localizing cancer cells) and the negative GradCAM
highlighting a normal lobule (confirmed by pathologist).

4. SELF-SUPERVISED SEGMENTATION

The obtained attention maps were confronted against the pre-
vious interpretation of the pathologist on several interesting
FOVS (i.e. that contained both normal and cancerous struc-
tures or on which they had doubts) and we have thus decided
that is pertinent to leverage this coarse localization to guide
a segmentation model. To pursue this we transformed the at-
tention maps into segmentation mask which would serve as



ground truth for training a U-Net [13] built by merging the
network already trained on the classification task and adding
a decoder branch. See Fig. 2 for more details on the architec-
ture. The pre-trained branch is ”frozen” meaning that we are
building upon the classification features and there are only the
parameters of the decoder left to train (∼ 9M parameters).

Noting that there is no high-confidence ground truth avail-
able for segmentation, the processing steps of converting the
attention maps into segmentation mask, as well as the choice
of the loss to optimize were guided by two aspects: i) the 16X
lower resolution of the GradCAM i.e. 90× 90 px as opposed
to 1440× 1440 px image resolution and ii) GradCAM’s doc-
umented weak point that it usually captures only the most dis-
criminative part of the classified object or only one instance of
the object. The attention maps were upscaled to the input size
using bilinear interpolation, followed by Otsu thresholding,
morphological dilation with a circular structuring element of
radius r = 15, and Gaussian filtering with σ = 15 to account
for the uncertainty on the boundaries. We also zeroed out the
positive attention maps for normal samples, knowing there
are no tumor cells present in normal FOVs, but there could be
several healthy structures present in cancerous FOVs.

We train the decoder by minimizing Tversky loss [14] us-
ing Adam optimizer with a rate of 1e−4. The loss, defined as

L = 1 − TP

TP + αFN + βFP
, which is a generalization of

the more popular Dice loss that introduces unbalanced penal-
ization of classes vs background. The penalization parameter
α = 0.6 (chosen from literature), meaning that false posi-
tives (FP) are penalized higher than false negatives (FN) i.e.
modeling the fact that we have high confidence in the ”pre-
segmentation” already obtained through GradCAM, but we
encourage an extended segmentation of the entire areas of in-
terest; by extension β = 1−α = 0.4 relaxes the penalization
on adding ”new” pixels to the segmentation. Less parameters
to train allow for a sightly bigger batch size of 5. Know-
ing that U-Net is generally fast to converge and our generated
ground truth is not of 100% confidence, we stop training when
the loss is stabilized, after 15 epochs. Visually, the segmenta-
tion obtained is slightly finer and indeed including more cells,
but we can not give a quantitative result at this point in the
study.

5. DISCUSSION AND CONCLUSION

To sum up, we introduced a method where classification and
segmentation stream-lined together to obtain a high confi-
dence classification jointly with a coarse segmentation of DCI
breast specimens. Qualitative analysis of the model shows
that the CNN discriminates between normal and cancerous
area in the same sample without explicit training and learns
textures consistent with the data. It can also detect isolated
cells which include also low contrast cells that can be difficult
to spot otherwise. It is difficult to quantify the improvement

brought by the added decoder to the fidelity of the already
computed segmentation masks, however a clear advantage of
the used approach is that the model (i.e. weights) can be eas-
ily deployed and be used in a plug-and-play manner with ded-
icated software, like Cytomine [15] or Icy [16]. Henceforth,
its allows the pathologist to give their feed-back and correc-
tions with little throughput, which would lead to improved
expert annotations.
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