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✓ High confidence breast tumor classification through high performance metrics and

qualitative assessment.

✓ Tumor localization from training on global tumor presence only.

✓ Classification and segmentation streamlined together for easy model deployment.

QUALITATIVE RESULTS

CONCLUSION

CONTEXT

Diagnosis at the point-of-care for biopsies & surgical margins :

✓ fast non-invasive imaging with Dynamic Full Field Optical Coherence 

Tomography (aka Dynamic Cell Imaging - DCI) technique offering 10 min/cm2

acquisition speed and 1µm resolution in 3D;

✓ immediate automated diagnosis and localization of malignancy through 

AI-based algorithm.

Feature Learning via Classification :

• VGG-16 backbone (pre-trained, ~15M params) + narrow bottleneck (Global 

Average Pooling) + shallow classifier to enforce generalization.

• Minimize weighted binary cross-entropy loss with SGD (lr=1e-4, 

momentum=0.8, batch=3) until convergence (~100 epochs).

Class Activation Maps : modified Grad-CAM accounting for both positive and 

negative gradients, i.e. reveal input areas accounting for and against tumor class.

Self-supervised Segmentation : train U-Net decoder on segmentation masks 

obtained from CAMs using Tversky loss ≡ weighted Dice loss.

QUANTITATIVE RESULTS

Accuracy Sensitivity Specificity F1-Score ROC AUC

per FOV 89 ± 4 % 88 ± 4 % 86 ± 6 % 90 ± 3 % 0.92 ± 0.02

per SAMPLE 94 ± 5 % 95 ± 10 % 80 ± 24 % 95 ± 5 % 0.96 ± 0.05
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Example of some learned filters in the last convolutional layer 

showing different cell sizes, shapes and organization 

Prediction of FOVs per sample per fold : x-axis = sample, y-axis = tumor prediction,

point = FOV, top figs = healthy samples, bottom figs. = cancerous samples, vertical figs. = folds

Streamlined architecture : U-Net with VGG-16 backbone and Grad-CAM computation

5-fold cross-validation metrics (average ± standard deviation)

• 33 patients who have undergone partial or total breast ablations

• 47 samples (34 pathological, 13 normal) from surgical waste

• 396 DCI fields-of-view (260 with tumor, 136 normal)
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