

CONTEXT

Diagnosis at the point-of-care for **biopsies** & surgical margins :

- ✓ fast **non-invasive imaging** with *Dynamic Full Field Optical Coherence* Tomography (aka Dynamic Cell Imaging - DCI) technique offering 10 min/cm² acquisition speed and 1µm resolution in 3D;
- ✓ immediate **automated diagnosis** and **localization** of malignancy through Al-based algorithm.

Normal breast lobule appearance in H&E Histology vs. DCI

> LightCT Scanner 🚄 by LLTech

METHOD

Feature Learning via Classification :

- VGG-16 *backbone* (pre-trained, ~15M params) + narrow *bottleneck* (Global Average Pooling) + shallow classifier to enforce generalization.
- Minimize weighted binary cross-entropy loss with SGD (Ir=1e-4, momentum=0.8, batch=3) until convergence (~100 epochs).

Class Activation Maps : modified Grad-CAM accounting for both positive and negative gradients, i.e. reveal input areas accounting for and against tumor class.

Self-supervised Segmentation : train U-Net decoder on segmentation masks obtained from CAMs using Tversky loss \equiv weighted Dice loss.

Leveraging Global Diagnosis for Tumor Localization in Dynamic Cell Imaging of Breast Cancer Tissue Towards Fast Biopsying

D. Mandache^{1,2}, E. Benoit², M.-C. Mathieu³, J.-C. Olivo-Marin¹, V. Meas-Yedid¹

- 1 Bioimage Analysis Unit, Institut Pasteur
- 2 LLTech SAS
- 3 Department of Medical Biology and Pathology, Gustave Roussy Cancer Campus

DATASET

Prediction of FOVs per sample per fold : x-axis = sample, y-axis = tumor prediction, point = FOV, top figs = healthy samples, bottom figs. = cancerous samples, vertical figs. = folds

	Accuracy	Sensitivity	Specificity	F1-Score	ROC AUC
per FOV	89 ± 4 %	88 ± 4 %	86 ± 6 %	90 ± 3 %	0.92 ± 0.02
per SAMPLE	94 ± 5 %	95 ± 10 %	80 ± 24 %	95 ± 5 %	0.96 ± 0.05

5-fold cross-validation **metrics** (average ± standard deviation)

sample-wise over all CV folds

Example of some learned *filters* in the last convolutional layer showing different cell sizes, shapes and organization

DCI crop of FOV correctly classified as tumoral with 97% probability

Tumor-positive activation *map* highlighting **isolated** cancer cells

- qualitative assessment.
- ✓ **Tumor localization** from training on global tumor presence only.

REFERENCES

[FFOCT] Dubois, Boccara et al. Appl. Opt. 2002. [DCI] Apelian, Boccara et al. Biomed. Opt. Express. 2016. [Grad-CAM] Selvaraju et al. ICCV. 2017. [VGG] Smonyan, Zisserman. ICLR. 2015. [U-Net] Ronnenberg et al. MICCAI. 2015. [Tversky Loss] Sadegh et al.Tech. Rep. 2017.

QUALITATIVE RESULTS

Tumor-negative *activation map* highlighting healthy breast lobule

CONCLUSION

✓ High confidence breast tumor classification through high performance metrics and

✓ **Classification** and **segmentation** *streamlined together* for easy model deployment.

CONTACT

diana.mandache@pasteur.fi

dmandache@lltech.co