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ABSTRACT

We propose a method to fully exploit the dynamic signal pro-
duced by a recently developed non-invasive imaging modal-
ity: Dynamic Cell Imaging based on Full Field Optical Co-
herence Tomography, towards fast extemporaneous tissue as-
sessment. The non-negative matrix factorisation method is
used in an interpretable and quantifiable fashion to extract the
signals coming from different structures of breast tissue in or-
der to characterize cancerous tissue.

Index Terms— dynamic full field optical coherence to-
mography, data mining, non-negative matrix factorization

1. INTRODUCTION

Breast cancer is the most frequent cancer in women world-
wide, representing almost 25% of all cancers in women, it is
also the second most deadly (15.4% of deaths) after lung can-
cer. Standard treatment involves the surgical removal of the
tumor, with partial or total breast ablation. Even after heavy
surgery, the risk of recurrence after 5 years is above 10%, sug-
gesting that an imperfect removal of the tumor was performed
during surgery. Hence, there is a crucial need to improve real-
time intraoperative characterization of the tumor margins, in
order to reduce the ablation of healthy tissue, the surgery time,
and the risk of additional surgery and cancer resurgence.

The gold standard procedure for margin assessment is
performed only after surgery and it is based on fixed, cut and
Hematoxylin & Eosin (H&E) stained samples, this can take
up to a couple of days. As for the preferred intraoperative
procedure, it is also histology (frozen section or imprint cy-
tology), despite being labour-intensive and time-consuming
(∼30min) so still difficult to employ during surgery. Other
techniques include X-ray or Ultrasound examination of the
specimen, but the insufficient resolution does not ensure a
sensitive diagnosis. Since this is a field of major interest,
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novel techniques are emerging, they are mostly founded
on physical properties of the tissue that could discriminate
between normal and cancerous cells [1]. The existing non-
invasive margin assessment techniques are either too labori-
ous or offer only a coarse resolution, some being just sensing
devices with no interpretable feedback to the clinician. We
propose the use of an imaging solution offering histology-like
structure appearance without requiring any tissue preparation.
The technique is Dynamic Cell Imaging (DCI) [2], a time-
resolved variant of Full Field Optical Coherence Tomography
(FFOCT) [3] and offers a intracellular resolution of 1 µm,
compatible with the need of clinicians.

FFOCT and DCI images are however still difficult to in-
terpret by surgeons because the obtained contrasts are signifi-
cantly different from standard histology (See Fig. 1). Further-
more, since DCI signal origin is not yet fully characterized,
there is variability in the signal acquisition and display, hin-
dering reproducible cancer tissue analysis.

Fig. 1: Breast duct in FFOCT, DCI and H&E (left to right).
In [2] it was showed that the DCI signal could be re-

vealing glycolysis-related movements, a metabolic pathway
through which the cell produces energy. Knowing that the
metabolism of cancer cells is inherently different from that
of normal cells [4], we believe these are clear motivations to
explore the dynamic signal provided by DCI.

In this study we present an exploratory approach towards
discriminating between cancerous and normal tissue based
on the dynamic profiles extracted from the DCI acquisition,
while remaining in the scope of interpretability. The approach
is performed on 33 patients after mastectomy.

2. OCT SIGNALS: NON INVASIVE IMAGING

FFOCT [3] provides a fast non-invasive intracellular level tis-
sue examination tool suitable for extemporaneous analysis as



Fig. 2: Example of DCI signal for three pixels (two inside cells and
one fiber): raw interferometric signal and FFT.

the sample does not require any preparation, i.e. in fresh
tissue. It is based on the same optical principle as classical
OCT, however, the latter performs a single-point raster scan
(producing a cross-section image), while FFOCT produces en
face images (i.e. full field front images) thanks to its array de-
tector. The obtained image captures the optical properties of
the tissue, such as the absorption coefficients of the structures
imaged or their differences in refractive indexes which lead to
scattering variations. The result is a gray scale image where
highly backscattering elements, mostly fibrous structures (e.g.
collagen), appear white while weakly backscattering content
like cells appears dark gray or black. The technique reveals
structures at a resolution of 1 µm up to a depth of 200 µm in-
side the sample.

DCI [2] relies on the same optical set-up as the classical
static FFOCT, except that there are multiple acquisitions (here
1000), resulting in a time stack of interferometric frames.
This captures the movement of scatterers in the sample, there-
fore it is only suitable for studying fresh tissue. The resulting
data cube for a 1.3 µm× 1.3 µm field of view (FOV) is quite
significant: 1440× 1440× 1000 pixels (∼4GB). For visual-
ization purpose the 3D data is transformed to an RGB image
according to the image formation algorithm [2], which con-
sists in performing a Fast Fourier Transform (FFT) and aver-
aging the amplitudes over 3 sets of frequency bands, resulting
in 3 channels coded in RGB (Fig. 2). However, the noise from
the environment (i.e. vibrations) induces a contamination of
the frequency maps resulting in a poor separation of the chan-
nels (Fig. 3). Hence, in the present work the full frequency
spectrum is considered, as detailed thereafter.

Fig. 3: DCI crop processed in RGB and the individual channels,
showing poor signal separation.

In order to extract the pertinent metabolic information and
remove the incoherent part of the signal the raw interfero-
metric (time) domain is transformed to the frequency domain.
Starting with 1000 frames acquired at 150Hz the next steps
are performed per FOV: (1) normalize frame to constant en-
ergy to remove frame-to-frame inconsistencies introduced by
the acquisition; (2) average the frames by groups of 2 to atten-
uate noise, obtaining 500 frames pseudo-acquired at 75Hz;
(3) pass to frequency domain with pixel-wise FFT obtaining

250 frequency maps with a step of 0.15Hz (with respect to
the Nyquist limit); (4) normalize FFT by its norm L1; (5)
pass to logarithmic scale to compensate the skewness of the
amplitude towards low frequencies. This results in a 1440 ×
1440× 250 frequency stack holding both spatial and dynam-
ical information.

3. BLIND SOURCE SEPARATION

The motivation towards isolating different structures in the
dynamic stack came from the prior intuition that there were
multiple behaviours present: combined signals from the sam-
ple and perturbations (e.g. vibrations of the setup), multiple
types of scatterers in the tissue (e.g. mitochondria and colla-
gen), multiple sources of signal in one pixel (e.g. superposi-
tion of fiber and cell) or even at a lower scale, given the resolu-
tion of 1 µm, different biological phenomena firing inside the
cells at organelle level. Therefore, a blind source separation
approach is appropriate for tackling this problem. Suitably,
we employed the Non-Negative Matrix Factorization (NMF)
method for its highly interpretable results by virtue of its pos-
itivity constraint leading to part-based decomposition.

Introduced by Paatero et al. [5], and popularised by Lee
et al. [6], NMF is successfully used in many domains [7]:
hyperspectral imaging, audio source separation, topic model-
ing, face recognition, furthermore, biomedical domain where
it gives excellent results in stain separation [8] and is used to
segment cells in calcium imaging [9]. NMF formulates a fea-
sible model for learning object parts, relevant to perception
mechanism [10].

The purpose of NMF is factorizing a data matrix X ∈
Rn×d into two low-rank positive matrices H ∈ Rk×d and
W ∈ Rn×k representing the extracted feature basis and its
corresponding activation, respectively : X ≈ WH , where n
is the number of data points, d the dimension of each data
point and k the number of chosen components to split into.
Finding the two composing matrices is achieved by minimiz-
ing the error (e.g. squared Frobenius norm - sum of squares)
between the original data matrix and the result of the fac-
torization: minW≥0,H≥0 ‖X −WH‖2F . To solve this opti-
mization problem the algorithm of multiplicative update [6]
is used; it updates alternatively and iteratively for W and H
in the direction of the gradient until convergence.

4. APPLICATION

In the scope of this work, we employ NMF decomposition as
a feature extraction technique towards classifying cancerous
and normal tissue. in order to probe the importance of the
metabolic signal revealed by DCI imaging, we will only take
into account the H components i.e. the dynamical profiles
found in each FOV. We then apply multiple tree-based models
on 382 DCI FOVs from 47 samples coming from a cohort of
33 patients after mastectomy.



4.1. Feature Extraction

The NMF algorithm was applied individually on the flattened
frequency cube of each DCI FOV, passing from 1440×1440×
250 to 2 073 600 × 250, so the spectrum of each pixel in the
cube is treated as an individual data point, disregarding the
spatial configuration. One drawback of NMF is the empiri-
cal choice of the rank of factorization k; it can be set using
some prior knowledge about the data together with trial and
error experiments. Given the lack of a validation metric, the
optimal heuristic choice of rank k = 5 was based on quali-
tative assessment of activation maps and energy of frequency
components. Accordingly, there were obtained frequency sig-
natures H ∈ R5×250 and their corresponding spatial activa-
tions W ∈ R1440×1440×5 (see Fig. 4 for the feature extrac-
tion pipeline). The revealed components correspond to: base-
line signal, fibers, noise, cells, motion artifact and they offer
proper signal separation (see Fig. 5 for a representative exam-
ple of the factorization result). However, further validation
through biological experimentation needs to be conducted.

Fig. 4: Overview of pre-processing and decomposition algorithm.

Fig. 5: NMF factorization results for k = 5: activations W (left) and
signatures H (right) showing : baseline, fibers, noise, cells, motion
artifact (top to bottom).

To construct a unified feature vector for each FOV, the H
components are ordered by their energy (area under curve)
and the ones with the minimum and maximum energy are re-
moved, since they correspond to the noise and baseline com-
ponent, respectively. Then the 3 remaining components are
concatenated to form a single feature vector that will repre-
sent each FOV. Note that ordering the components by their
energy also ensures some consistency of the feature vector
between FOVs.

4.2. Classification

In terms of classification models, we focused our attention
on tree-based classifiers [11] whose constituting element is
the Decision Tree: a flowchart-like graph where each inter-
nal node represents a rule-based test on an attribute (i.e. fea-
ture), each branch representing the outcome of the test, and
each leaf node a decision (class label). The paths from root
to leaf represent classification rules. We prefer this approach
mainly by virtue of their interetability, generalization capabil-
ities and efficiency on small sample size. They are robust to
outliers because the node splits are determined based on the
sample proportions in each child node and not on their abso-
lute values. Therefore, this approach also leads to finding the
combination of features which can best classify the data i.e.
the most important features.

Training a single decision tree can be limiting in the sense
that simple trees will have a large bias (oversimplification of
the model - underfitting) while complex trees will display a
large variance (lack of generalization - overfitting). The bias-
variance trade-off is improved by ensemble methods, so com-
bining multiple decision trees (weak classifier) towards build-
ing a stronger classifies. There are two main approaches: bag-
ging [12], which consists in independently training multiple
trees on random sub-samples of data points and/or features
and then aggregating their predictions by a voting mechanism
and boosting [13] which incrementally trains trees on sam-
ples previously misclassified. In the proposed work, multiple
tree-based classifiers were tested, from the simplest (single
Decision Tree) to the more complex ensemble methods i.e
bagged trees (Random Forest, Extra Trees) or boosted (Adap-
tive Boosting, Gradient Boosting, XGBoost [14]).

The splitting of the dataset into trainset and testset was
done in a stratified manner, meaning that the class propor-
tionality of the whole dataset was kept. Also, to tackle the
class imbalance (thus, avoiding learning a biased model and
also having clear interpretable performance metrics) an over-
sampling of the minority class (Cf. normal) was performed:
for the train set we applied the SMOTE [15] algorithm which
generates synthetic samples from interpolation and for the
validation set we only applied random oversampling to avoid
introducing any ambiguity in the performance metrics.

5. RESULTS

We trained multiple tree-based models using 4-fold cross val-
idation: 75% of the samples for training (286 samples: 174
cancerous, 112 normal) and 25% for validation (96 samples:
58 cancerous, 38 normal). Only the lower half of spectrum
(up to fbin = 120) was considered since there was observed
that the higher part of the spectrum has low SNR, hence over-
fitting on noise is avoided. Take note of some of the most
important hyperparameters chosen: maximum tree depth =
10 (for bagging ensembles and simple decision tree) or 1 (for



boosting models), number of trees in ensembles = 100. Ta-
ble 1 presents the classification metrics obtained. The model
with the best generalization power proves to be AdaBoost,
this can be deduced by the fact that it obtains the best accu-
racy, while also keeping consistency between train and test
metrics. We also notice a lower specificity compared to the
sensitivity which is due to the under-representation of the nor-
mal class in our dataset. The results are promising, being
comparable with the other state-of-the-art non-invasive mar-
gin assessment techniques [1].

Classifier Train Acc. Test Acc. Test Sn. Test Sp.

AdaBoost 90.95 ±1.39 70.91 ±6.38 77.59 ±7.21 64.22 ±10.37

XGBoost 91.38 ±5.66 70.69 ±5.21 82.33 ±5.5 59.05 ±18.48

RandomForest 98.13 ±0.32 65.73 ±7.93 83.62 ±4.95 47.84 ±15.73

ExtraTrees 96.77 ±1.81 65.52 ±4.00 78.45 ±5.52 52.59 ±10.73

GradientBoosting 98.42 ±0.72 65.09 ±4.66 76.72 ±4.64 53.45 ±10.20

DecisionTree 99.93 ±0.12 57.54 ±3.41 64.66 ±3.11 50.43 ±4.46

Table 1: Classification performance metrics: accuracy. sensitivity, speci-
ficity (mean percentage ± standard deviation for 4-fold cross validation).

5.1. Feature Importance

As one of the main motivations for choosing this type of
models was their semantic interpetability, we are looking at
the most discriminating features as established by the best-
performing algorithm (AdaBoost). They are highlighted in
Fig. 6, plotted over the average components of the whole
dataset. Feature importance is calculated for each attribute in
a decision tree as the amount by which the split points over
the considered attribute improve the performance measure.
Then, for each feature, its importance is averaged over all
the trees of the ensemble. In other words, for the given sit-
uation, feature importance is the ability of an attribute (here
frequency bin in a NMF component) to discriminate towards
normal or cancerous class.

Fig. 6: Avg. and std. of the features (3 NMF components) over the
training set (orange) and the fbins selected by AdaBoost (blue).

We observe the following frequencies appearing: the peak
at f=2.1Hz T=0.5 s corresponding to the cell component, as
well as the lower part of the spectrum for the more static fiber
components T=2 s to 6 s. However, for the peaks in the vicin-
ity of f=4.2Hz and 9Hz we intend to further investigate their
corresponding spatial maps to characterize their nature, but

based on our preliminary observations we believe they corre-
spond to vibration artifacts due to external nuisance.

6. DISCUSSION AND CONCLUSION

In the present work we demonstrate the feasibility of em-
ploying a blind source separation technique, namely NMF,
to better extract the signal coming from different types of
moving scatters in breast tissue imaged with the non-invasive
DCI technique in an interpretable and quantifiable way that
can overcome the noise and motion artifacts. For now we
used NMF decomposition to classify between cancerous and
normal FOVs with 70.91% accuracy and we revealed some
salient frequencies.

For future work we are planning to also include the mor-
phological information i.e. the spatial activations associated
with the dynamical signatures towards achieving improved
classification results. Moreover, we aim to apply a scaled-
up NMF algorithm on more FOVs whereby we could achieve
separation between cell types (cancerous vs immune cell).
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