

Cancer Detection in Full Field Optical Coherence Tomography Images

Diana Mandache

LLTech & Bioimage Analysis Unit – Institut Pasteur

Thesis Advisors Jean-Christophe Olivo-Marin Vannary Meas-Yedid

December 7th, 2022

A Multidisciplinary Project

Cancer Diagnosis

rapid tissue analysis

Label-free Imaging

- Full-Field Optical Coherence Tomography (*FFOCT*)
- Dynamic Cell Imaging (DCI)

Image Analysis

exploratory data analysis

aid-to-diagnosis

Enable use of novel imaging technique for cancer diagnosis via data analysis.

Clinical Context

- Cancer one of the leading cause of death worldwide
- Gold standard for diagnosis is **tissue analysis** / histopathology
- Standard histopathology is **time** consuming, **labor** intensive
- A need for rapid diagnosis in **interventional** settings
- Pathologists shortage

Imaging Context

H&E Histology

Full-Field Optical Coherence Tomography **FFOCT**

Dynamic Cell Imaging DCI

normal breast lobule

Methodology

Full-Field Optical Coherence Tomography FFOCT

FFOCT = *en face* OCT

Optical setup : Michelson interferometer

Light interferometry principle :

identical waves amplify when in phase, cancel when not

Low coherence interferometry:

large bandwidth = short coherence length $\propto Z$ resolution

PROS	CONS
good resolution (1μm)	no cell information
fast (seconds)	
reveals fibers	

Dynamic Cell Imaging DCI

- overcomes **strong** signal from *fibers* and reveals **active** intra-cellular structures
- captures confined micro-displacements of scatterers
- from 10ms Brownian to 6s migration
- origin of signal presumably *glycolysis* \rightarrow live tissue

Apelian et al. Biomedical Optics Express 2016

Methodology Outline

Can we **extract** Wh more info from **lea** DCI **signal** ? **im**a

What can we learn from DCI images ? Can we learn **fiber representation** in DCI from FFOCT ?

Can DCI be **routinely** used in **clinical** applications ?

Breast Surgical Excisions Dataset

Goal : feasibility study to discern pathological from healthy tissue in DCI

Cohort :

- 33 patients, mastectomies
- 47 samples, 11 healthy and 36 tumoral
- several ROIs per sample ~10 (3 to 16) ROIs / sample

Diagnostic : per ROI with H&E correlations, by pathologist

Dataset :

- ROIs:
 - 279 cancer
 - 179 normal
 - 23 uncertain

1 Exploring DCI Signal

the focal plane & the acquired pixel **intensity**

 $I(t) = I_1(t) + I_2(t)$

1 Exploring DCI Signal

Signal Separation

- recover the independent component signals from a mixture signal
- non-negative matrix factorization (NMF)

$$\min_{W\in \mathbb{R}^{n imes k}, H\in \mathbb{R}^{k imes f}} \|X-WH\|_F^2 \ s.\,t. \ W\geq 0, H\geq 0$$

- positive part-based decomposition
- dynamic and spatial components
- empiric choice or rank *k* =5

1 Exploring DCI Signal NMF Decomposition Results

1 Exploring DCI Signal A Promising Direction

Diagnosis

- train tree-based classifiers (eg. XGBoost, AdaBoost) on dynamic components only
- normal vs cancer discrimination accuracy ≤ 70%
- reveal feature importance

Conclusion

 a framework for quantitative analysis of oscillatory behaviors in DCI

What information can be learned from spatial DCI data ?

2 Normal vs Breast Cancer in DCI Images

Goal: predict pathologist diagnosis from DCI images.

Convolutional Neural Networks (CNN)

- ML models inspired by the human vision mechanism
- Learn **patterns** from image examples
- Input image > feature extractor > embedding > classifier > output prediction

Our Training Strategy:

- ensure convergence : limited data → transfer learning, VGG16 / ImageNet
- ensure generalization → narrow bottleneck, GAP embedding, dictionary-like

2 An interpretable diagnosis

localization maps - *GradCAM* **learned patterns** - *synthetic input, gradient ascent*

DCI crop of FOV correctly classified as tumoral

Tumor-positive localization map isolated cancer cells

Tumor-negative localization map healthy breast lobule

negative evidence

positive evidence

Example of learned *filters* in the last convolutional layer showing different **cell sizes, shapes and organization**, proper to each **class**

Enlarged nucleoli as biomarker in DCI: appearance in H&E and DCI, qualitative evidence

2 Fully-supervised Classification Results

Quantitative Results

• Algorithm **surpasses** pathologist performance

Possible explanation:

✓ Sensitivity : pathologist missed low contrast isolated invasive cancer cells
 ✓ Specificity : normal vs in-situ cancer

- Error agreement between algorithm (3) and pathologists (6)
 - Model appropriates medical reasoning.
 - Model overcomes human limitations.
- Performance is robust to adding images with **uncertain** diagnosis
 - Model is *robust* to **ambiguity**.

	Accuracy	Sensitivity	Specificity
pathologist P1	91 %	91 %	92 %
pathologist P2	89 %	94 %	75 %
avg(pathologists)	90 %	93 %	83 %
algorithm ⁽¹⁾	94 %	97 %	85 %
⁽¹⁾ aggregated 5-fold CV test pred	+ 4%	+ 4%	+ 2%

Fully-supervised learning is powerful for diagnosis and cell feature extraction.

3 FFOCT/DCI Cross-Modal Representation

Goal : better characterize **fiber orientation** from DCI

Strategy

- akin to human agent, learn by contrast FFOCT / DCI
- train model to match corresponding images contrastive learning

contrastive representation learning

ML paradigm for building an embedding space in which similar sample pairs stay close to each other while dissimilar ones are far apart.

Cross-modal matching = pretext task for robust fiber representation in DCI.

3 Concept

3 Implementation

- Siamese CNN encodes ${f \Phi}$ embedding function
- Δ function is **cosine distance** :
 - not sensitive to amount of activation
 - bounded [0,1] → binary formulation:

$$L(\theta, \hat{\theta}) = \begin{cases} -\log(\cos(\hat{\theta})) & \text{if } \theta = 0\\ -\log(1 - \cos(\hat{\theta})) & \text{if } \theta > 0 \end{cases}$$

- "Infinite" dataset generation
 - exploit registered images
 - artificially augment dataset by extracting corresponding sub-images (480px patches)
 - **online** batch generation (new data every epoch)

siamese neural network

an artificial neural network containing identical sub-networks working in tandem on different inputs.

3 Validation Identity Error

3 Validation Symmetry Error

3 Cross-Modal Representation Results

Robust fiber characterization

- Quantitative :
 - *identity* & *symmetry* **errors** <1%
 - implicit margin learned
- Qualitative :
 - imaging **artifacts** are understood by the network and discounted
 - **low contrast** fibers are captured by the network

Universality : agnostic to dataset → build general fiber representation in DCI

Mandache et al. ISBI 2023

A Complete Characterization of DCI Images

tumor classification model + cross-modal matching model = full (*cells* + *fibers*) image **representation** ↓ serve **downstream** tasks (image coding, signal analysis, diagnosis...)

DCI image

tumor classification model (cell features)

localization maps

learned filters

cross-modal matching model (fibers features)

Methodology Outline

Can we **extract** more from DCI **signal** ? What can we learn from DCI images ? Can we learn **fiber representation** in DCI from FFOCT ?

Can DCI be **routinely** used in **clinical** applications ?

Breast Biopsy Procedure

biopsy = sample tissue from suspect nodule to diagnose malignancy

DCI use-cases :

- biopsy **quality assessment** → **minimize** number of biopsies excised
- **rapid** diagnosis \rightarrow **comfort** patient (80% biopsies not malignant)

Breast Biopsies Dataset

Cohort: 71 breast nodules

Diagnostic : a histopathology report per nodule, based on H&E

Dataset :

- 71 breast nodules + pathology reports
 - 27 malignant
 - 44 benign
- 145 biopsies in DCI
 - 53 from malignant
 - 92 <u>from</u> benign

100 Mpx

Breast Biopsies Dataset Image Sampling

- sub-sample image optimally :
 - minimal **fragmentation**
 - avoid splitting homogenous structures
- SoSleek context-aware sampling with SLIC superpixel segmentation
- ⇒ 2K patches of 1024 x 1024 px / 145 biopsies

Simple Linear Iterative Clustering (SLIC) image segmentation method that groups pixels according to their spatial and color proximity.

Sample Optimally with SLIC (SoSleek) Python package for optimally sampling big images with texture awareness, based on SLIC superpixels. <u>github.com/dmandache/sleek-patch</u>

Cancer Detection via Multiple Instance Learning

one diagnostic per **group** of patches \rightarrow MIL training paradigm

MIL Assumptions:

- A malignant biopsy contains at least **one** malignant instance.
- A benign biopsy does not contain **any** malignant instances.

Goal: predict global (biopsies) and local (patches) diagnosis

Multiple Instance Learning (MIL) supervised method for learning from labeled groups (bags) of instances and the individual labels are unknown.

negative bags

Multiple Instance Learning

MIL formulations

- Embedding-level MIL
 - global embedding
- Instance-level MIL
 - local scores

positive instances Fully Supervised Learning

Implementation = multi-branch CNN

- computationally heavy
- cannot train end-to-end
- transfer weights (not task-specific)

negative bags

Most MIL applications are embedding-level with transferred feature extractors.

negative instances

Favor interpretability and task-specific knowledge encoding in MIL.

CLF 🛛

NSTITU

Implementation

Architecture

- instance-level MIL with max aggregation ۲ implements MIL assumptions $\widehat{Y} = max_i(\widehat{y}_i)^{\frac{\mathcal{D}CI \text{ input}}{\text{Tile 2}}}$
- main branch transferred from our prior diagnostic task
- *freeze* **domain specific** feature extractors
- *fine-tune* task specialized feature extractors + classifier

Training

- $\mathcal{L}(\hat{Y}, Y) = \mathcal{L}(max_i(\hat{y}_i), Y)$
- Focal Loss
 - focus on hard examples
 - $CE = -\log(P)$ 8% accuracy gain vs CE

Results

- intra-domain pre-training allows convergence
- relevant metric assessment:
- *Not all biopsies* of same nodule might be *malignant*.
 - specificity at **biopsy** level **90 %**
 - sensitivity at nodule level 89 %
- clinical acceptability criteria:
 - specificity > **90%**
 - sensitivity > **80%**
- improve with local ground truth *OR* embedding-level MIL

Intra-domain vs Extra-domain pre-training

	Datasets	Test Metrics		
		Accuracy	Sensitivity	Specificity
Extra	lmageNet + BiopsyData	72 %	57 %	82 %
Intra	SurgeryData + BiopsyData	86 %	89 %	84 %
		+ 14 %	+ 32 %	+ 2 %

	Test Metrics			
	Accuracy	Sensitivity	Specificity	
iopsy	85 %	76 %	90 %	
odule	86 %	89 %	84 %	

n

n=92

1.0

0.8

malign prediction 6.0 9.0

0.2

0.0

n=15

0.99

Prediction Analysis

Benign tumors and **high grade** cancers have more chance to be identified.

prediction accuracy according to malignancy grade 0 1 2 3 grade carcinome 3 sample prediction according to

malignancy grade

n=13

n=21

0.94

Find best use-case for DCI: screening, emergency intervention.

Conclusions Data Exploration

Better characterization of DCI data.

Conclusions Clinical Application

diagnosis method for real-world **clinical** application :

- ✓ remove expert annotation bottleneck
- ✓ predict local diagnosis without explicit training
 → interpretability
- ✓ facilitate datasets and aid-to-diagnosis model
 development

Efficient aid-to-diagnosis model development without disturbing clinical protocol.

Speed-up the adoption of DCI.

Perspectives

dynamic signal analysis + cell/fiber **localization maps** as ground truth

supervised source separation

□ include corresponding **histology images**

- preparation protocol correlated with DCI acquisition
- multi-modal contrastive learning

metabolic analysis + dynamic signal analysis

10x glycolysis rate in cancer cells (Warburg effect)

Efforts towards better image representation and biological understanding.

Thank you ! Merci ! Mulțumesc !

Institut Pasteur Vannary Meas-Yedid Jean-Christophe Olivo-Marin • all BIA members 2017-2022 ♥ Tru Huynh Quang

> **LLTech** Emilie Benoit Bertrand de Poly

Hôpital Pitié-Salpêtrière Dr Yasmina Badachi

Hôpital Sainte-Anne Dr Bertrand Devaux

Institut Gustave-Roussy Dr Marie-Christine Mathieu

Timeline

