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ABSTRACT

This paper proposes an adaptive compressive sensing recon-
struction method which provides a higher recovered image
quality. Based on an initial compressive sampling reconstruc-
tion at a given sampling rate, the visually salient regions of
the image that are more conspicuous to the human visual
system are extracted using a classical graph-based method.
The target acquisition subrate is further adaptively allocated
among these regions, such that the new acquisition will fa-
vor the interest areas. The measurements produced by this
adaptive method are fully compatible with the existing sparse
reconstruction algorithms, which favors the utilization of the
proposed scheme. Simulation results show that the saliency-
based compressive sensing recovery method outperforms the
conventional sparse reconstruction algorithms in terms of im-
age quality at the same target sampling ratio with a smaller
increment in the complexity.

Index Terms— Compressive sensing, adaptive sampling
rate, sparse reconstruction, saliency map, HVS

1. INTRODUCTION

The theory of compressed sensing (CS) provides a new ap-
proach for signal acquisition wherein signal can be exactly re-
constructed using a small number of random linear measure-
ments, under certain sparsity conditions [1]. Since most sig-
nals are indeed compressible in some transform domains, CS
has attracted a lot of attention in many applications, includ-
ing medical imaging, camera design, and multimedia sensor
networks due to its potential of reduction of sampling rates,
power consumption and computation complexity in the image
acquisition.

In case of image and video, low complexity of the sensing
scheme plays an important role in designing an imaging sen-
sor. Block-based CS (BCS) scheme, where non-overlapped
blocks are sensed separately, comes to solve this issue due
to its advantage of low complexity sampling and high recon-
struction quality [2]. However, the conventional BCS samples
all blocks with the same number of measurements, neglect-
ing the subjective importance of each block to Human Visual
System (HVS), that can lead to difficulty of recovering fine

grained details. On the other hand, from the view of biolog-
ical vision and scientific analysis, the visual significance of
each block varies with its spatial position [3]. Some regions
can be more sensitive to the HVS, while others have a lower
level of visual interest. Therefore, it is necessary to design an
adaptive block based compressive sensing scheme by joining
the block based sampling and the HVS characteristics in order
to achieve a smart-human recovery performance.

In order to improve the limitations of the traditional fixed-
rate BCS, several studies have been conducted in the adaptive
BCS from various perspectives. In [4], the authors give a the-
oretical analysis of the adaptive compressive sampling. In
this paper, authors confirm that adaptive measurements sig-
nificantly outperform non-adaptive systems in practice. Some
acquisition techniques take benefit from local features ex-
traction in the measurement domain such as standard devi-
ation [5]- [6], edge counting [7] or estimation of reconstruc-
tion error [8]. Inspired by relationship between the compress-
ibility and the redundancy of images, an adaptive scheme is
proposed in [9] by estimation of the compressibility based
on the local redundancy which is measured by statistics of
the pre-sensed measurements. These measurement-domain
based recovery algorithms can benefit from on-the-fly adap-
tive sampling (they do not require feedback channel from re-
ceiver side) but are often not so accurate in the reconstruction.
Only few works perform the adaptive BCS by combining the
sampling and reconstruction together. In [10] this procedure
is used to improve the reconstruction quality for pedestrian
tracking in the video surveillance applications.

Visual saliency is a cognitive mechanism of the HVS
in order to accurately identify significant visual information
(salient or foreground regions) and filter out other redundant
visual information (non-salient or background regions) for the
natural scenes. HVS focuses on the salient regions while ig-
noring non-salient areas when exploring a natural scene.

To the best of our knowledge, there is no application of
the visual saliency in the image compressive sensing domain.
Different from previous approaches in the adaptive CS, we
adopt the adaptive compressive sensing framework by access
to side information, such as a saliency map, which leads to
an efficient CS image reconstruction. In this sense, we try to



obtain a saliency model of the original image.
Since the complex human visual system performs numer-

ous functions when viewing, it is not possible to combine it
into the direct sensing process. Beside of the hardware prob-
lems, the process of integrating the salient region detection
into the cameras is not straightforward due to its time and en-
ergy consuming process. However, by considering a feedback
channel between the sensor and the receiver, the CS can gain
from the visual saliency for improving the image reconstruc-
tion quality. In addition, the feedback information should be
as few as possible, then a low bandwidth channel is required.

The procedure begins with a fixed-rate compressive sam-
pling for all blocks and a primary recovery at the receiver.
Then a classical graph based method [11] is used to com-
pute the saliency map, so that the HVS interesting regions
are extracted. Then, a binary map, where the ones represent
the blocks belonging to the salient region, is organised. We
achieve the adaptivity in sampling by establishing a feedback
channel between the sensor and receiver, making subsequent
measurements more directly into the salient regions of the im-
age.

Experimental results manifest superior improvement of
the proposed method compared with the conventional fixed-
rate CS reconstruction scheme at the expense of a low com-
plexity increase. Also, subjective results demonstrate that
the proposed method reduces reconstruction artifacts and pre-
serves more details.

The remainder of the paper is organized as follows. In
Section 2, an overview of the compressive sensing is given.
Section 3 focuses on the proposed saliency-based compres-
sive sensing framework. The results analysis is shown in Sec-
tion 4 and some conclusions are drawn in Section 5.

2. COMPRESSIVE SENSING

In the compressed sensing, given an original signal x ∈ <N ,
the observed measurements y ∈ <M are sampled by y = Φx,
where Φ is a M×N random orthonormal matrix (M � N ).
The sampling rate (subrate) is defined as M/N . The fun-
damental concept of the CS theory states that the signal x
can still be exactly recovered from the measurements y, if it
is sparse enough [12], although the number of unknowns is
larger than the number of measurements. Quite often, real
world signals, such as image and video, are sparse (or com-
pressible) with respect to some transform basis Ψ. Then, the
recovery problem turns into the generation of a sparse set of
transform coefficients. It should be noted that Φ must satisfy
the Restricted Isometry Property (RIP) and be incoherent with
Ψ [12].

How to efficiently reconstruct the image with a good re-
covery quality and low computational complexity is a hot
topic in the CS applications fields. To address these issues,
there have been some great efforts to develop the CS re-
construction algorithms which differ based on their compu-

tational complexity and reconstruction quality. The algorithm
proposed in [13] searches for the x with smallest l1−norm
consistent with the observed y,

x = argmin
x
‖x‖1 s.t. y = Φx. (1)

Because of the high computational complexity of this al-
gorithm, a fast iterative method based on successive projec-
tions and thresholding in the transform domain, called Pro-
jected Landweber (PL), has been proposed which provides a
good trade-off between computational complexity and recon-
struction quality [14]. Given an initial approximation of the
transform coefficients X0, the algorithm updates Xi at itera-
tion i as following:

Xi = Xi−1 + ΨΦT (y − ΦΨ−1Xi−1), (2)

where Ψ−1 denotes the inverse transform. In addition, a
thresholding process controls the sparsity of the generated
transform coefficients at each iteration.

In the case of images and videos acquisition, saving the
measurement matrix Φ requires a large memory; moreover, it
increases the computational burden during the reconstruction.
Block compressed sensing (BCS) comes to solve these issues
by splitting the image into B ×B distinct blocks and acquir-
ing all the blocks using an appropriately-sized measurement
matrix ΦB . Assuming xi is the raster-scan representation of
block i of the input image, the corresponding measurements
are yi = ΦBxi [2].

In the followings, we propose to use the Block Com-
pressed Sensing with Smoothed Projected Landweber (BCS-
SPL) algorithm introduced in [14], in order to illustrate the
proposed adaptive CS reconstruction method, due to its good
performance in terms of complexity and image recovery
quality. Note that any other block-based CS reconstruction
method can replace the BCS-SPL for the image recovery.

3. PROPOSED METHOD

Given the good performance of the Graph Based Visual
Saliency (GBVS) model in [11] that aims to predict the scene
locations focused by a human observer, we propose to use it in
the sequel in order to build up a saliency-based compressive
sensing framework. This method is adaptive to the human vi-
sual perception by applying a high sampling rate to the salient
regions and a low one to the non-salient regions.

Fig. 1 presents the block diagram of the proposed
saliency-based compressive sensing reconstruction frame-
work. Firstly, it follows the basic BCS acquisition . The im-
age is partitioned into non-overlapping blocks of B×B size;
further, the blocks are sampled at the same subrate. At the re-
ceiver, an initial reconstruction of the image is obtained using
the BCS-SPL algorithm and a saliency map for the whole re-
constructed image is computed using the GBVS model [11].



Fig. 1. Block diagram of the proposed algorithm.

On the saliency map, a binary label is assigned to each
block, indicating if it belongs or not to a salient region. The
new sampling subrates are computed on this binary block la-
beling, such that the total acquisition subrate equals the orig-
inal one used in the first acquisition. The block labelings and
the new sampling subrates are further sent to the sensor in or-
der to perform a new acquisition which will serve for the final
image reconstruction.

In order to obtain block labelings, first, we normalize the
saliency map of the input image into [0, 1]. The output is a
map where the intensity of each pixel represents the probabil-
ity of that pixel belonging to the salient regions. After calcu-
lating the average saliency value for each block, we label each
block as a salient block (labelled with one) or non-salient one
(labelled with zero) to get a binary mask by using a thresh-
old T in the range [0, 1]. Obviously, the percentage of blocks
falling into the salient regions will be increased by decreas-
ing the threshold. In the next section, a simple procedure for
finding T is proposed. However, finding an appropriate T can
be considered as a future work.

It should be noted that each block has different saliency
value and definitely, assigning the sampling rate to each block
according to its saliency value will improve the reconstructed
quality. But, it will increase the overhead information for
sending back to sensor. We just use a binary label that en-
sures the system does not need a high bandwidth feedback
channel.

Our goal is thus to allocate different subrates for the
salient and non-salient blocks, while satisfying a subrate con-
straint. This constraint states that the overall subrate should
be equal (or slightly inferior) to the target subrate S. Assume
the number of salient blocks and non-salient blocks are Ns

and Nns, respectively. The subrates of salient and non-salient
blocks are adjusted so that the overall subrate equals with the
target subrate such that:

NsSs + NnsSns = (Ns + Nns)S, (3)

where Ss and Sns are adaptively allocated subrates for the
salient and non-salient blocks, respectively. For obtaining Ss

and Sns, we let the salient and non-salient subrates be a frac-
tion of a constant value U :

Ss = KsU and Sns = KnsU, (4)

subject to

0 < Kns < Ks < 1 and Ks + Kns = 1, (5)

where Ks and Kns are predefined parameters to determine
the proportion of the salient blocks and non-salient blocks in
the number of measurements. From (4) and (5) , one can
easily solve (3) for U :

U =
(Ns + Nns)S

KsNs + KnsNns
. (6)

A small Kns can lead to a serious distortion of the non-
salient blocks, while a selection of large Kns cannot reflect
the superiority of the proposed algorithm because of incon-
spicuous contribution for the adaptive sampling. In this paper,
we consider Kns = 0.2 and Ks = 0.8.

This process maybe produce Ss > 1 (especially in a high
target subrate S.) Thus, we modify the solution for this case
and set Ss = 1 and Sns can be easily computed from (3):

Sns =
(Ns + Nns)S −Ns

Nns
. (7)

For a low target subrate S, Sns is very small and can result
into inaccurate reconstruction of the non-salient blocks. In
order to ensure that the assigned subrate of the non-salient
blocks is not too small, we assign a minimum subrate Sm

for Sns. We set up Sm = K × S, where 0 < K < 1 is a
predefined parameter to adjust the minimum subrate for the
non-salient blocks. In this paper, we consider K = 0.2. After
obtaining Ss and Sns by (4), if Sns ≤ Sm, we set Sns = Sm

and the subrate of the salient blocks is re-calculated using (3):

Ss =
(Ns + (1−K)Nns)S

Ns
. (8)

As an overall result, the sampling of block i will be carried
out by

yi =

{
Φsxi xi ∈ Saliency
Φnsxi xi ∈ General

(9)

with a smaller subrate than S for the non-salient regions,
while the visually significant blocks are assigned a higher
subrate than S, so that the overall subrate of image is un-
changed.

As previously mentioned, any CS reconstruction can
be straightforwardly used to recover the image from these
adaptive measurements. In this paper, the BCS-SPL algo-
rithm [14] is used in order to exemplify the proposed acquisi-
tion method.
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Fig. 2. Reconstructed images and saliency map.

4. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the proposed
adaptive saliency-based compressive sensing image recon-
struction scheme presented in Section 3 and compare it with
the original BCS-SPL recovery algorithm. The performance
of the proposed scheme is evaluated on 5 popular 8 bits per
pixel, grayscale test images (Lena, Plane, Mandrill, Boat and
Living room) of 512 × 512 pixels resolution. All results are
averaged over 5 independent trials, since the reconstruction
performance varies due to the randomness of the sampling
matrix. We make the assessment in terms of quality of the re-
constructed image, i.e. PSNR (Peak Signal-to-Noise Ratio),
and computational burden.

For the BCS sampling, we use block dimension of size
B = 32, as proposed in [14]. The target subrate S is fixed for
two algorithms (BCS-SPL and proposed scheme) and the cor-
responding subrates for the salient and non-salient blocks (i.e.
Ss and Sns) are determined by (4). For the CS reconstruction,
we adopt the well-known SPL algorithm due to its high per-
formance and low computational burden [14]. The CS recov-
ery is coupled with the Double Discrete Wavelet Transform
(DDWT) as the sparsity basis.

After a fixed-rate block compressive sampling, an initial
image is reconstructed using the BCS-SPL algorithm; based
on this image, the salient and non-salient regions are com-
puted using the GBVS [11]. The first and second columns in
Fig. 2 show the initial reconstructed images at the target sub-
rate S = 0.3 and their corresponding saliency maps, respec-
tively (the saliency maps were quantized for better display.)
In the saliency maps, brighter regions represent the salient lo-
cations on which a human observer pays more attention to,
while the darker areas represent the less-saliency regions.

To find an appropriate threshold T to identify the salient
blocks and compare the quality of the reconstructed image,
we proceed empirically and vary T from 0 to 1 over several
test images and compute the corresponding PSNR value at
each threshold. The resulting PSNR values versus T for the
Lena image at the target subrate S = 0.3 is shown in Fig. 3.
This curve provides a reliable comparison of how proportion
of the salient regions has an effect on the reconstructed im-
age. It is important to note that the percentage of the salient
regions decreases when the threshold value increases, how-
ever, the PSNR does not change proportionally with. Over
several tests, we found out that the appropriate value for the
threshold T with a good recovery precision can be determined
by:

T =
1

2(R× C)

R−1∑
x=0

C−1∑
y=0

H(x, y), (10)

where R and C are the width and height of the normalized
saliency map H , respectively, and H(x, y) is the saliency
value of the pixel at the position (x, y). As can be observed in
Fig. 3, for the Lena image, the obtained threshold is T = 0.13



Fig. 3. Comparison of the effect of threshold value on PSNR
value of the reconstructed image for the Lena image at the
overall subrate S = 0.3.

Fixed-rate BCS-SPL Adaptive Proposed method

Fig. 4. Zoomed portions extracted from the reconstructed im-
age of Lena at the overall subrate S = 0.3.

which is near to the real maximum of the curve. At this case,
the percentage of salient regions is %53.9.

According to the saliency map in Fig. 2, relatively high
sampling rates are assigned to the blocks in the salient regions
and low sampling rates are assigned to the rest of blocks. For
instance, for the Lena image at the target subrate S = 0.3,
the found subrates for the salient and non-salient areas are
Ss = 0.46 and Sns = 0.11, respectively.

The superiority of the adaptive algorithm is highlighted in
Fig. 4 and Fig. 5 for the Lena image at target subrate S = 0.3.
Fig. 4 shows the zoomed portions that are extracted from the
images generated by the fixed-rate BCS-SPL algorithm and
adaptive proposed method, respectively. Fig. 4 validates the
performance of the adaptive compressive sensing algorithm
based on the visual attention. As can be seen, the fine details
in the salient regions become much clearer compared with the
BCS-SPL, especially in some complex regions which contain
high frequencies (strong hairs). Fig. 5 shows the reconstruc-
tion error images, obtained for the BCS-SPL and proposed al-

Fixed-rate BCS-SPL Adaptive Proposed method

Fig. 5. Error map between the reconstructed and original im-
age of Lena at the overall subrate S = 0.3.

Table 1. Image reconstruction PSNR in dBs

Target Subrate (S)
0.1 0.2 0.3 0.4 0.5

Lena

BCS-SPL 28.02 31.41 33.48 35.15 36.73
Proposed 28.63 32.26 34.56 36.42 37.84

Ss 0.15 0.30 0.45 0.61 0.77
Sns 0.04 0.07 0.11 0.15 0.17

Plane

BCS-SPL 31.68 35.14 37.19 38.86 40.41
Proposed 34.76 37.79 39.62 40.94 42.38

Ss 0.23 0.47 0.71 0.93 1
Sns 0.05 011 0.17 0.23 0.34

Mandrill

BCS-SPL 20.65 21.85 22.91 23.97 25.09
Proposed 20.73 22.17 23.23 24.17 25.44

Ss 0.18 0.34 0.52 0.67 0.78
Sns 0.04 0.08 0.13 0.17 0.20

Boat

BCS-SPL 25.04 27.72 29.49 31.08 32.57
Proposed 26.05 28.72 30.46 31.96 33.30

Ss 0.16 0.30 0.45 0.60 0.76
Sns 0.04 0.07 0.11 0.15 0.19

Living room

BCS-SPL 24.78 27.03 28.66 30.13 31.61
Proposed 25.24 27.74 29.36 30.88 32.38

Ss 0.14 0.28 0.42 0.58 0.70
Sns 0.03 0.07 0.10 0.14 0.18

gorithms with respect to the original image at the target sub-
rate S = 0.3. We can generally infer that the error in the
reconstructed image by the proposed method in the salient re-
gions is lower in comparison with the BCS-SPL algorithm.

To better illustrate the improvement, an objective com-
parison is provided in Table 1 at different target subrates for
the fixed-rate BCS-SPL and the proposed algorithm. Addi-
tionally, Table 1 shows the allocated subrates for the salient
region and non-salient regions (Ss and Sns). Clearly, the pro-
posed method gains remarkably compared with the case of
fixed subrate BCS. It can be observed that for the highly tex-
tured images, like Mandrill, the PSNR improvement is be-
tween 0.1 dBs to 0.35 dBs. For smoother images, like Plane,
the improvement is up to 3 dBs.It can be concluded that if
the salient parts are extracted accurately, better performance
of the CS reconstruction can be realized both in the subjec-



Table 2. Comparison results for Lena in term of PSNR (dBs)
Target Subrate (S)

Algorithm 0.1 0.2 0.3 0.4 0.5
BCS-SPL 28.02 31.41 33.48 35.15 36.73

[9] 28.11 31.61 33.94 35.96 37.35
Proposed 28.63 32.26 34.56 36.42 37.84

Table 3. Execution time (Sec.) For Lena at S = 0.3
Algorithm Time
BCS-SPL 21.63
Proposed 62.34

tive/visual and objective tests.
In Table 2, the performance of he the proposed method

is also compared with the adaptive compressive sensing tech-
nique introduced in [9]. Both algorithms use the same re-
construction algorithm (SPL). As can be seen, the proposed
algorithm outperforms the algorithm proposed in [9] in term
of PSNR for the Lena image.

While adaptive sensing results in the improved perfor-
mance, we mention a few limitations. In Table 3, we compare
the execution time for each algorithm on the Lena image at
the target subrate S = 0.3. The experiments are conducted
using MATLAB (R2014a) on a PC with an Intel(R) Xeon(R)
processor at 3.20GHz and 8-GB of RAM at 64-bits operat-
ing system of WINDOWS 7. Our proposed method is slower
than the BCS-SPL, however, because of the block-based sens-
ing, it is plausible to the extent that a parallel implementation
of the proposed algorithm can be trivially accomplished in
hardware, which is suitable for the real-time applications. In
addition, Although the proposed method has been employed
in single-image acquisition, one can imagine the application
of the proposed method for pedestrian tracking in the video
surveillance applications and the sampling of low-to-normal
dynamics video sequences, where only the first frame within
a group of pictures (GOP) is used for the saliency computa-
tion and rate allocation. Given the high resemblance among
the frames within the same GOP, adaptive sensing uses this
saliency information to guide the sampling of the next frames
in order to optimize the gain of new information.

5. CONCLUSION

Inspired by the saliency based model of visual attention, a
novel adaptive compressive sampling scheme has been pro-
posed in order to enhance the reconstruction performance
of the block-based compressive sensing. At the first step,
an initial recovery is obtained using fixed subrate sampling.
Further, based on a binary saliency map obtained with a
graph-based algorithm, adaptive compressive sampling is per-
formed, such that more visual-significant details can be cap-
tured in the salient regions. This way, the proposed method

enhances the recovery quality by finding an optimal subrate
trade-off between the salient and non-salient areas. The ex-
perimental results show a remarkable reconstruction quality
improvement of the proposed method compared with the ex-
isting algorithms which adopt a fixed-rate sampling.
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