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Abstract

This paper presents the work I did during a five month internship at the
Bioimage Analysis Unit of Institut Pasteur, that marks the end of my mas-
ter studies in Informatics and Imaging at Université Pierre et Marie Curie
(Paris). The purpose of this project is to exploit techniques of Deep Learn-
ing in the biomedical context, more specifically, to automatically detect can-
cerous areas from skin excisions imaged with Full Field Optical Coherence
Tomography (FF-OCT) scanner. The objective is to extract representative
features from these images and, on their basis, to build a classifier that learns
a generalized distribution of the data.

Résumé

Ce rapport présente le travail que j’ai effectué pendant mon stage de cinq mois
au sein de l’Unité d’Analyse d’Images Biologiques, à l’Institut Pasteur, mar-
quant la fin de mes études en Master d’Informatique et Imagerie à l’Université
Pierre et Marie Curie (Paris). L’objectif de ce projet est d’exploiter les tech-
niques de Deep Learning dans le contexte biomédical, et plus particulière-
ment pour détecter automatiquement les zones cancéreuses sur des images
d’échantillons de peau obtenues avec un scanner de Tomographie par Co-
hérence Optique plein champ (FF-OCT). Le but est d’extraire des carac-
téristiques représentatives pour ces images et, basé sur elles, de construire
un classificateur qui apprend une distribution généralisée des données.
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1 Introduction

1.1 Motivation

According to the American Cancer Society [12] skin cancer is the most com-
mon malignancy, mostly represented by non-melanoma types: Basal Cell
Carcinoma (BCC) and Squamous Cell Carcinoma (SCC), from which 80%
are BCC. There are about 5.4 million cases of such cancers each year in the
U.S. from 3.3 million patients (a person usually develops multiple cancers).
The number of cases has been growing, however death from this type of skin
cancer is unusual, there are about 2.000 deaths yearly in the U.S. caused by
a very weak immune system.

The ultimate goal of this project is to speed up Mohs Surgery which is
the preferred procedure (gold standard) for treating the non-melanoma skin
cancers.. This technique’s high rate of success (>98%) relies on its carefully
controlled approach which consist in progressive (gradual) removal of thin
layers of tissue. As each layer is extracted, its margins are examined for
the presence of cancer, this guides the extraction of the next layer. The
examinations are the most time consuming step (on average 2-3 hours per
surgery) because the sample needs to be frozen, sliced, stained and only
then microscopically analyzed. In the meantime the patient is temporarily
bandaged and he has to wait [11].

Patient’s comfort can be increased and surgery time significantly reduced by
replacing classical histology with the so-called optical biopsy. This refers to
non-invasive imaging methods that use the properties of light to visualize the
tissue at different depths. Instead of being mechanically cut, the sample is
imaged at different levels on the Z axis, allowing for a 3D view assembled
from a stack of 2D slices.
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Histology slide scanner microscopes have a resolution of less than a micron,
so the main requirement of an optical biopsy system is to provide cellular-
level resolution while assuring enough penetration depth. The technologies
generally employed in this domain are optical coherence tomography (OCT)
and fluorescence confocal microscopy, however we will use Full Field Optical
Coherence Tomography (FF-OCT) which is demonstrated to surpass them,
offering the best balance between the two before-mentioned properties: res-
olution and penetration depth. The theory of FFOCT will be detailed in
section 2.

Since FFOCT is a state of the art technique there’s a high necessity in train-
ing pathologists, so in the purpose of making it more accessible, we intend
to develop an automatic aid-to-diagnosis tool. To achieve this we rely on
the advancing theory of Deep Learning which recently became the top so-
lution for tasks like object detection, face and speech recognition etc, the
kind of tasks that "come naturally" to humans, but are difficult to define
algorithmically.

There is a growing tendency for medical diagnosis applications to rely on
deep learning which is also fueled by the fact that this technique tends to
win the grand challenges in the domain: Tumor Proliferation Assessment
Challenge - MICCAI ’16, Breast cancer metastases detection in lymph nodes
- ISBI ’16 ’17, all having as data histology slides. Recently, neural networks
conquered the field of dermatology, with the method of Esteva [3],validated
by 21 pathologists, that classifies cancerous lesions from macro images of the
skin surface. In OCT imaging, deep learning is used for segmentation of the
retinal layers [7], however there is almost no research on analyzing Full Field
OCT optical biopsies using neural networks.

5



1.2 Entities involved

The laboratory that welcomed me during the internship is the Bioimage
Analysis Unit of the Pasteur Institute where I could benefit from their vast
expertise in developing methods of computer vision and image analysis for the
biomedical domain. Through the lab’s collaboration with LLTech SAS, who
produces the Light-CT scanner - an imaging system used for optical biopsy, I
was introduced to the FFOCT imaging technique. Their scanners are spread
all over the world, one of them being at Drexel University Medical College, in
Philadelphia, USA which provided us with both images of surgical excisions
and their interpretation i.e. diagnostic. The communication between us
and the pathologist was possible through Cytomine [16] which is an open-
source web application developed by the University of Liège, it is intended
for big image management and annotation inside multidisciplinary teams for
collaborative projects.

Bioimage Analysis Unit, Pasteur Institute

The Pasteur Institute of Paris needs no introduction, since its creation in
1887 it is fighting against infectious diseases together with its international
network of 29 institutions spread on 5 continents. It managed to become a
world renowned institution not only through the name of its founder Louis
Pasteur - the first Professor of Microbiology and the founder of Immunology,
who made some of the greatest breakthroughs of his time, like pasteurization
and vaccines for anthrax and rabies, but also for the 8 Nobel prizes awarded
since the 1900’s, including the one in 2008 for the early discovery of HIV.

Bioimage Analysis Unit is one of the 18 teams of the Cell Biology & Infection
Department which brings together biologists with computer scientist, physi-
cists and mathematicians in order to develop software tools for biological
image analysis and quantification. Among the recent interests of the lab are:
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multi-particle (viruses, genes, etc) detection and tracking by Bayesian filter-
ing and Wavelet transform, cell segmentation by active contours and analysis
of histological images for digital pathology. All these applications are made
available to the biological community under one software that reunites them,
the Icy platform [15].

Besides the knowledge available in the lab, I could profit from the huge
computational resources of the institute, which it is known to be crucial in
efficiently developing Deep Learning algorithms. Besides hundreds of CPUs
and thousands of gigabytes of RAM, the Pasteur computational cluster has
GPU nodes formed of last generation Nvidia Tesla GPUs which are especially
dedicated to training deep learning models. For example the M40 model is
claimed to be "the world’s fastest deep learning training accelerator" with a
speed of 7 teraflops (7 trillion floating point operations per second), memory
of 24 GB and bandwidth of 288 GB/s.
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2 Full Field Optical Coherence Tomography

2.1 Context

There is a plethora of non-invasive imaging techniques, whose field of ap-
plication is determined by the trade-off between resolution and penetration
depth: going from magnetic resonance imaging (MRI) or computed tomogra-
phy (CT) used in studying organs anatomy (big depth full body, big resolu-
tion of the order of millimeters) to optical coherence tomography (OCT) and
confocal microscopy. OCT provides higher resolution (few microns) while
offering a shallow penetration depth (≈1-2mm), making it best suited for
in-vivo study of the layers composing the retina (back of the eye), or en-
doscopic imaging of arteries, esophagus, intestines[6]. On the other hand,
confocal microscopy offers an excellent lateral resolution (0.8 µm), but an in-
sufficient axial resolution which doesn’t give enough penetration for executing
an optical slicing comparable to histology.

Full Field Optical Coherence Tomography (FFOCT), developed by the ES-
PCI team of Pr. Claude Boccara and made commercially available by LLTech
in 2011 for research purposes in biological tissue morphology and function,
comes to fill a gap between classical OCT and confocal, offering a resolution
of 1µm in all 3 dimensions.

2.2 Principle

FFOCT relies on the same principle as OCT, the property of interference of
light, this is a phenomenon in which two waves superpose to form a resultant
wave. It usually refers to waves that are correlated (coherent) to each other
because they belong to the same source. For the sake of a full explanation of

8



Figure 1: Normal skin morphology: FFOCT vs. Histology: a. Epidermis b.
Collagen c. Hair follicle + Sebaceous Glands d. Sweat glands e. Fat cells

the denomination Optical Coherence Tomography, tomography means imag-
ing by sections or sectioning, through the use of any kind of penetrating
wave: light, sound, x-ray etc.

In a FFOCT system the light from a white halogen lamp is broken by a beam
splitter into two arms: a sample arm containing the examined sample and a
reference arm containing a mirror, then it combines again and it is captured
by the camera. By moving the reference arm, one can image the sample at
different depths. The obtained image is a result of the optical properties
of the tissue under investigation, such as differences in refractive indexes or
scattering variations and, to a lower extent, differences in absorption.
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As opposed to classical OCT, which performs a single-point raster scan pro-
ducing a cross-section XZ image, FFOCT produces "en face" XY images
because it has an array detector i.e. megapixel camera (CCD or CMOS).
This explains the name "full field", because it captures the full XY plane at
once, instead of point by point.

2.3 Specifications

The Light-CT scanner that is based on the FFOCT technique is able to
perform microscopic sub-surface visualization of tissue, without damaging
it in any way (no cutting, no markers, no photo bleaching). It offers a
cellular-level resolution of 1 micron in 3D and a speed of scanning of 4-5
minutes per cm2 with a supported sample size of maximum 2.7cm in diameter
(corresponding to around 7cm2) and 5 mm in height. The penetration depths
it can reach depend on the type of tissue examined, it can vary between
200 µm and 1mm It has a simple setup, the scanner has the size of a regular
microscope and it just need to be connected to a computer whit its dedicated
software installed on it.

2.4 Dynamic FFOCT

A new acquisition method has been developed recently by [5], it is destined
to work on the same setup but it also quantifies microscopic movements. It
brings information on the metabolic activity at an intracellular scale that is
complementary to the morphological information.

By observing the sample for a given duration and subtracting the information
of the first "frame" taken as reference, the changes in the tissue can be
measured. The meaningful information is extracted from the raw signal by
calculating the standard deviation of the signal in time.
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FFOCT produces grayscale images, which they are known to be harder for
the human eye to discern, also there is speckle noise present which makes
it almost impossible to remove in post-processing without losing some in-
formation that is hidden in the noise. What is more, certain structures of
the tissue can overshadow others because of their physical (optical) prop-
erties, for example cancerous cell nuclei can become less visible if they are
surrounded by an abundance of collagen whose refractiveness makes it pro-
duce strong signal, appearing very bright. Nevertheless, D-FFOCT solves
this problem, because it makes only the cells visible because collagen fibers
are static. What is more, both spatial and temporal information can be
superposed in one image, in color this time.
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3 Fundamentals of Deep Learning

3.1 Context

Classical algorithms represent an explicit solution to a well-defined prob-
lem that can be translated in computer language under the form of specific
instructions. However some tasks are ambiguous to define in such a way,
ironically enough, those tasks are the ones that "come naturally" to humans,
like: object detection, speech or handwriting recognition.

From the idea of mimicking the human reasoning (decision making mech-
anism) a new field of computer science emerged in the 1950s: Artificial
Intelligence. At the beginning intelligence consisted more of "knowledge",
under the form of specifically organized databases on which there were ap-
plied logical rules. The most popular success of AI was in 1997, when Deep-
Blue, developed by IBM, beat at chess the world champion, by testing the
outcome of all possible moves. There also existed some attempts in the med-
ical domain, like ONCOCIN [10] used by Stanford’s Oncology Clinic in the
80s. It was an expert system that based on an extensive history of cancer
cases chose the chemotherapy plan with the best chance of cure and the least
chance of side effects.

Later, in the 1980s, the concept of learning was introduced in the form of
Machine Learning: algorithms based on statistics, probabilities and op-
timization can solve problems by experience, studying an extensive set of
examples and finding patterns in them, then use that prior training on new
data.

There are two types of learning: supervised and unsupervised. In a super-
vised problem, the input data is accompanied by the desired results and the
algorithm has to learn a generalized rule that maps inputs to outputs: if the
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outputs are categories/classes then it’s a classification problem, and if the
outputs are continuous then we call it a regression problem. In unsuper-
vised learning, patterns in the data are found with no guidance (no given
outputs), the main problem being clustering - splitting data into groups.
Some popular methods are: random forests, support vector machines (SVM)
(supervised), k-means (unsupervised).

In computer vision, it’s not very effective to consider the attributes of the
data to be the raw pixels, but to define some features which encode the
data; this can also be seen as a dimensionality reduction problem. A popular
approach is bag-of-features[14]: 1) from a set of images extract salient
keypoints (SIFT[18], SURF[19], HOG[20]), 2) split keypoints in k groups by
k-means clustering, 3) only one keypoint is enough to represent one cluster
- the center of the cluster, 3) all the cluster centers (which are nothing else
but patches of the images: can be textures, small object parts etc) form a
vocabulary, 4) encode an image using the vocabulary, 5) train a classifier
(e.g. SVM) in the space of the vocabulary. Another approach is to have
already defined so-called filter banks, independent from the dataset [21].
A filter convolved with an image gives a feature map which brings lower
level information like the presence of edges with a certain orientation. Here
learning consists in discriminating the data according to their responses to
the filters.

We notice that a crucial part in a good machine learning algorithm is finding
the most suitable definition for the attributes of the data according to the
problem, this is where Deep Learning steps in.

Deep learning has its roots in 1957 with the invention of the perceptron
[17], which served as a linear classifier, but it is basically the prototype of the
modern artificial neuron. However, back then neural networks didn’t man-
age to perform better than existing machine learning algorithms, so research
in the domain almost stagnated. In 1986 a major discovery was made, the
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backpropagation[24] algorithm which was used for adjusting the weights pro-
portionally with their influence in the error. Thanks to it, in 1997, LeCun
[28] managed to develop the first large-scale practical application of (con-
volutional) neural networks LeNet : handwritten digits recognition on the
MNIST database.

The field of deep learning developed slowly (and networks got deeper) to-
gether with the improvement of GPUs until the major boom of 2011 when
Cires,an and colleagues [27] achieved superhuman performance in several im-
age recognition challenges with deep neural networks, "AlexNet"[25] sur-
passed classical machine learning approaches by a significant percentile, win-
ning the ImageNet competition (1.3 million high-resolution natural images
from 1000 classes). Furthermore, in the medical domain Cires,an’s neural
networks [26] also outperformed other approaches, in the ICPR’12 and MIC-
CAI’13 challenges for breast cancer (mitosis) detection in large histology
images.

3.2 Principle

Deep learning is synonym with deep neural networks, which represent
a biologically inspired computational model that consists of interconnected
layers of artificial neurons. The output of one neuron represents the input
of one or more neuron from the next layer and there are no connections
between neurons of the same layer, so a neural network is an acyclic graph.
A neuron can serve as a stand alone weak classifier, so a network can be seen
as a combination of weak classifiers that form a strong one. The intelligence
of a network resides in the weights of its neurons, which also represent its
adjustable parameters. To get to correctly solve a task, the network adjusts
its parameters through a learning mechanism that is based on trial and error
principle.
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A neuron has more inputs and one output value, each input value is scaled
up or down according to its corresponding weight and then the sum of the
products is fed to an activation function which mimics the biological exci-
tation of a neuron. Theoretically, an on-off switch is best modeled by the
Heaviside a.k.a step function which is 1 if its input value is positive and 0
if else, however, in nature, the change of state does not happen instantly
so the Sigmoid a.k.a soft step function was introduced f(x) = 1

1+e−x . In
modern architectures, rectified linear logic unit (ReLU) is generally used be-
cause it accelerates the convergence of the learning mechanism to a factor of
6 [25] and because of its simpler definition f(x) = max(0, x), so it is just a
threshold that removes weak signals.

Neurons are interconnected, the output of one transfers to the input of an-
other through ŷ = f(

∑
iwixi + b) called forward propagation. As an input

travels through the layers of neurons it produces an output that is compared
with the ground truth (the expected output) through a loss function which
computes the error between the expected and the predicted output. The
loss function usually used is cross entropy L(y, ŷ) = −∑

i yilog(ŷi). The goal
is to minimize this error as much as possible and the way to do it is by
adjusting the weights accordingly. This adjustment is done with the back-
propagation procedure which distributes the prediction error (i.e. loss) to
all interconnected neurons in a path, proportionally to their contribution to
the error. Mathematically, it means computing the gradient (or derivative) of
the loss function with respect to the weights of a multilayer stack of neurons,
so applying the chain rule for derivatives: ∂c

∂a
= ∂c

∂b
∂b
∂a
. Then, with the deriva-

tive of the loss computed with respect to each weight in the network, the
weights are adjusted in the negative direction of the gradient (or derivative)
with a step called learning rate: wi ← wi − η ∂L

∂wi
.
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3.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are designed for matrix inputs, namely
images. They are inspired by the visual cortex of some animals, every neuron
responding to a small area of the field of view called receptive field. A con-
volutional layer is composed of more feature maps, which represent the
repose of the input after being convolved with a filter, a filter defines a fea-
ture and the map signals its presence in the input image. A filter represents
the weights of the neurons and the feature map their outputs, the inputs of
the neurons are connected to patches of either the input image or the feature
maps of the previous layer, these patches correspond to the receptive fields.

After a convolutional layer, there is usually a pooling layer, it downsam-
ples its input by either taking the maximum value in an area (max-pooling)
or taking the mean value (average-pooling). The motivation behind down-
sampling is to reduce the number of parameters of the network, reduce the
representation size of data and makes the network less sensitive to shifts or
transformations.

After several convolutions and downsamples which serve as feature extrac-
tors, one ore more fully connected layers are added. As the name suggests,
their neurons are connected to every neuron from the previous layer and
to the next layer. They can learn non-linear combinations of the features
discovered before and they serve as a classifier.

CNNs exploit the property that images are compositional hierarchies, hence
lower layers learn basic features (e.g. edges, blobs) and higher layers learn a
combination of the features from previous layers (i.e. textures, object parts).
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4 Application

4.1 Data

The quantity and also the quality of the data are crucial for a machine learn-
ing algorithm to perform satisfactory. For the beginning of this project, the
quantity of data was limited: 10 images manually segmented by a pathologist
and annotated with the labels BCC and normal, only 3 of them contained
cancerous (BCC) tissue. Out of the whole annotated data, 93,8% was normal
tissue and only 6,2% cancerous zones. Besides the massive imbalance in the
amount of data in each class, the intra-class variation is also important, as
it can be seen in Fig.1 a normal skin sample imaged with FFOCT presents
multiple distinctive structures like: epidermis, sebaceous and sudoriparous
glands, fat cells and collagen, while cancerous regions have very similar ap-
pearance: high density of dark nuclei of around 10px diameter. On average,
an image has 200 Megapixels and we build the dataset by splitting them in
patches of 200x200 pixels; this is a suitable size for both appropriate con-
text capturing and respecting memory constraints imposed by deep learning
methods.

Deep learning algorithms don’t perform well on unbalanced datasets, this can
also be deduced from the fact that most datasets used for academical purpose
are balanced, whereas real-life problems are anything but balanced, like in
the medical field: the number of healthy patients massively outnumbers the
sick cases. From the tests we conducted on the raw data (non-overlapping
200x200 patches) we concluded that indeed, the majority class was favored,
so most of the patches were classified as normal.
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Solutions for tackling class imbalance problem:

• more data: getting more data is expensive and time consuming, espe-
cially in the medical field;

• more categories : split the more populated class into more subclasses,
e.g. label every normal skin structure, but defies the purpose of this
project;

• sampling : at first sampling was done naively i.e. just randomly dis-
carding samples from the normal class to reach the same number of
data in both classes. Then, inspired by the oversampling technique
found in the literature which consists in either duplicating or synthet-
ically generating data from the minority class [22, 23], we changed the
method of selecting the patches. Our method consists of splitting the
normal areas in non-overlapping patches and for the cancerous class we
select overlapping patches such that we get around the same amount
of samples as for the majority class, this implies choosing the sampling
stride size accordingly;

• negative mining : smartly discarding samples from the majority class by
keeping the most difficult samples i.e. the ones that are misclassified;
this technique will surely be tried out in the future;

• weighting : samples from minority class influence more the loss function
which quantifies the error of the system; from our tests this gives good
results only for small ratios (e.g. 1 to 1,5), not 1 to 38 which would
correspond to our data proportionality (1.139 BCC patches and 43.289
normal patches, meaning that there is one cancerous data sample for
38 healthy samples, intuitively, one BCC patch has the importance or
weight of 38 normal patches). In the end we made use of this technique
but only after we augmented the minority class through oversampling
(28.396 BCC, 43.289 normal ⇒ 1 : 1.5 ratio).
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As new annotations were received from the pathologist and the dataset was
complete (40 images of which 10 cancerous), the classes got even more un-
balanced (BCC is less than 1% of the data) and new characteristics appeared
for the BCC areas. One explanation we discovered was that there was more
collagen present and because it is more reflective than the cancerous cells
they become obscured by it. In some cases, abnormal tissue which seems
to "swirl" around cancerous zones can be hinting for the presence of BCC.
Because this kind of abnormal area was not labeled, we tried to capture more
context for the BCC class by slightly changing the sampling: before we con-
sidered as BCC a patch which had 80% of its area labeled accordingly, but
then we opted for just 30%.

For training the network 80% of the data was used, while the rest of 20%
was used for testing. Following the last sampling technique mentioned, the
first dataset comprised of 10.641 distinct normal patches and 9.741 overlap-
ping BCC patches (out of 98 distinct patches; stride of 20px) and finally, the
complete dataset had 43.289 non-overlapping normal patches, 28.396 over-
lapping BCC patches (out of 1.139 distinct patches; stride of 40px). Also,
some data augmentation was performed, by horizontal and vertical flipping,
slight rotations and shifts.

4.2 Supervised approach

After testing different state-of-the-art architectures like VGG16 or Incep-
tionV3, pre-trained on ImageNet database or not, we didn’t obtain accu-
racies over 60% so we inferred that those architectures were too deep and
complex for our data distribution, however further investigation is intended.
The proposed architecture has the simplicity of LeNet combined with ideas
introduced by AlexNet and adopted also by VGG, like:
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Figure 2: Proposed CNN architecture for supervised learning

Figure 3: Convolutional filters learned supervised

• convolutional blocks: consecutive convolutional layers (instead of one
conv layer followed by pooling) to capture larger input with a save in
parameters;

• dropout [29]: after the pooling layers a fraction of neurons is randomly
removed; this is done in the learning phase only, with the aim of avoid-
ing overfitting, in other words, generalizing rather than memorizing;

• rectified linear unit (ReLU): activation function used to ease the com-
putations while remaining biologically accurate f(x) = max(0, x).

We trained a 7 layer neural network (see Fig.2): 2 convolutional blocks with
2 convolutional layers each, followed by maxpooling and dropout after ev-
ery block and finally, a fully connected layer with 512 neurons and 50%
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dropout serving as a classifier, followed by 2 output neurons corresponding
to each class. The layers from the first block have 32 filters of 7x7px each
and the other one has layers with 64 filters of size 5x5px. The network has
in total 20.686.561 weights to train. The weights are initialized using the
Glorot method [31] which comes from the idea that the gradients of each
layer should follow more or less the same distribution at the beginning of
training. The aim is to optimize the objective function, which is binary cross
entropy, while maximizing sensitivity (a.k.a. recall), this was possible using
Adam [32] stochastic gradient decent on mini-batches of 32 samples along
200 iterations. Adam (Adaptive Moment Estimation) is one of the adaptive
methods of gradient descent (along with Adagrad, Adadelta, RMSprop and
more) whose particularity is that they adapt the learning rate to the pa-
rameters, performing larger updates for infrequent parameters and smaller
updates for frequent ones. The mini-batch gradient descent approach is a
trade-off between computational accuracy and convergence time, so between
batch (entire dataset) and stochastic (one example at a time) gradient de-
scent. From practice we discovered that a smaller batch-size (i.e. 32 samples)
gives better results and from [33] we see that local minima have a better gen-
eralization capacity than global minima (offered by computing the gradient
on the whole dataset). Training time for the small dataset was around 5
hours on the GPU cluster presented in section 1 for 200 epochs (1,5 mins per
epoch); an epoch represents one forward and one backward pass for all the
training examples so for all the mini-batches. However, testing is instanta-
neous on any king of system configuration.

Firstly, training was done on the 10 image dataset, which, as we detailed
before, was stable from the point of view of the BCC class. We obtained good
results, an accuracy of 94,6% (see column 1 of Table 1) and from analyzing
the filters and some activation maps we conclude that, indeed, the network
learns to discriminate the BCC class by its concentration of small dark blobs.
As we tested the complete 40 image dataset with this network (see column 2
of Table 1) it reinforced this belief. After training on all the data we obtained
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Train10 & Test10 Train10 & Test40 Train40 & Test40

Specificity 89,26 % 93,22 % 79,48 %
Sensitivity 99,94 % 35,40 % 93,22 %
Accuracy 94,60 % 91,74 % 84,92 %

Table 1: Performance measures for the proposed architecture trained and
tested on 10 and 40 image datasets

satisfactory results, an accuracy of 84,92% (see column 3 of Table 1), but the
learned filters and the activation maps didn’t give much intuition. From
comparing the maximum activations (see Fig.4) it is clear that the network
trained on 40 images finds more complex textures than the CNN trained on
10 images that focuses on the distribution of blobs of a size of approximately
10 pixels.

(a) trained on 10 images
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(b) trained on 40 images

Figure 4: Max input activations of Conv3 layer

4.3 Unsupervised pre-training approach

There is a strong motivations for adopting the unsupervised approach: there
is not enough annotated data and one of the goals of the project is to in-
volve pathologists as little as possible so we can pre-train on unlabeled data
and fine-tune on our small dataset. With unsupervised learning we can even
hope to find hidden patterns in the data that can help us understand the mor-
phology of cancerous tissue in FFOCT imaging, that can even have clinical
relevance.
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Figure 5: Proposed CAE architecture for unsupervised learning

Figure 6: Convolutional filters learned unsupervised

Convolutional Auto-Encoder (CAE) [30], which have architectures similar to
CNNs used for segmentation, like Unet [34], but unlike them, it tries to repro-
duce the input itself, instead of obtaining a segmentation map. CAEs learn
to encode and also decode the data with two mirrored networks: one with
convolutional and pooling layers that compresses the data and the other with
deconvolution (a.k.a. reversed convolution) and unpooling that decompresses
the data. The data representation can be either compressed or sparse.

The proposed architecture has two symmetrical networks with 3 block of
convolution/deconvolution followed by pooling/unpooling (see Fig.5), each
convolution/deconvolution layer learns 8 filters of size 7x7, 5x5 or 3x3, then
pooling reduces or increases the size for a factor of 2x. The dimensionality
of the data is reduced from 40.000px to 5.000px, the input being represented
with 8 feature maps of 25x25px at the core of the network. Since the recon-
struction is not 100% accurate to the input, the CAE can double as denoising
method (see Fig.7).
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To use the trained CAE as feature extractor the decoder network is removed
from the architecture, leaving only the encoder on top of witch a classifier is
added. Several classifiers were tested:

• SVM: training a SVM took 12 hours and gave no results (all examples
were classified as BCC);

• Random Forest: training took between 5 and 15 minutes depending on
the number of decision trees in the forest, it gave comparable results
with 100 or with 500 trees, even if the sensitivity seems good, the overall
performance is not satisfactory (see column 1 of Table2);

• Fully Connected Neurons: by adding two layers of fully connected neu-
rons on top of the trained network we built an architecture similar with
the one used for supervised learning; the newly added layers have 1024
and 256 neurons, respectively.

Figure 7: CAE: Original input (top row) vs. Decoded output (bottom row)

4.4 Performance measure

In theory, assessing the performance of a classification algorithm is simple and
straightforward: simply measuring the percentage of correctly classified data.
But if it is obtained an accuracy of 90% when 90% of the data belongs to one
class, then the real efficiency of the method is probably 0%. In other words,
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Random Forest Fully Connected
500 trees 1024 + 256 neurons

Specificity 55,28 % 74,54 %
Sensitivity 90,38 % 97,75 %
Accuracy 73,66 % 86,69 %

Table 2: Performance measures for the proposed pre-trained feature extractor
combined with RF and FC classifiers, tested on the 40 image dataset

measuring the performance should be strongly dependent to the problem
statement and, especially with neural networks which are black-box models,
concluding that a method is correct and robust there is needed some intuition
in the reasoning that the method learned.

First of all, taking a look at our specific problem, which is medical diagnosis,
what has the greatest importance is the correct classification of the cancerous
class rather than the normal class, because it is more grave to send home a
sick patient than double check a healthy one. To quantify this we have two
measures: sensitivity (true positive rate) that determines the percentage of
sick cases identified as such and specificity (true negative rate), measuring
correctly classified healthy cases. For this project, having a good sensitivity
rate is a priority. This values are obtained from the confusion matrix which
shows the count of true positives, true negatives and, more important, false
positives (false alarm) and false negatives (miss).

On the other hand, statistical results may be misleading, we can not inter-
pret the efficiency of the method or its behavior when given different data,
especially since neural network are a black-box model. In order to get more
insight into the reasoning learned by the network we can try to make some
sense out of visualizing the network. One thing that can be done is visualiz-
ing the weights of the neurons which correspond to the convolutional filters
applied on the image to look for certain features; since the filters are usually
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very small (e.g. 5x5px) the texture aimed at may not be very obvious to
the human eye (see Fig.3 and Fig.6). Therefore, to get the texture that a
neuron (filter) is looking for we can visualize the input that would maximize
the activation of that neuron, this is done by doing gradient ascent in the
input space with respect to the filter activation loss (see Fig.4). Lastly, we
can get some intuition by looking at the activation maps i.e. the results of
a certain input images after being convolved with a filter or, in other words,
the transformation of the input as it travels down the network.
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5 Conclusion

This project proved to be a crossover from academic theory for solving real
world problems in the field of biomedical research. Even if the results ob-
tained are only preliminary, they point towards a promising direction, which
is analyzing Full Field OCT images with the powerful methods of deep learn-
ing in the purpose of developing computer-aided diagnosis tools and easing
its insertion in the clinical environment. Using neural network was moti-
vated by the necessity of discovering features that can best represent this
unexplored imagery and we approached this problem both in a supervised
and unsupervised way. Hence, we showed that unlabeled images can also
be exploited for an improved classification of normal and cancerous tissue.
This is relevant because it proves that data can also be "blindly" analyzed
and only a minimum expertise of pathologists is required. This can be a
work-around having to build a big database of annotated images which is
very costly especially in the medical field. We have also shown that out-
of-the-box solutions are not well suited for this novelty imaging technique
and there is limitless research potential since FFOCT is little explored in
the domain of automatic diagnosis. Another idea that emerged during the
evolution of this project, is that, in order to accurately assess the efficiency
of such a model, we need to understand the reasoning learned by the ma-
chine. In our attempt to demystify deep learning, we looked under the hood
of the network and visualized its "intelligence" under different forms: filters,
activation maps, maximum activation input and offered a flavor towards the
disambiguation of this black-box model.

The project opened many perspectives for future work, first of all, we will
exploit the information of the abnormal tissue surrounding some cancerous
zones by adding a new annotation class and establishing some relationship
between classes; then we will try segmenting out the cancerous tissue taking
as inspiration U-Net[34] and MiMo-Net[35] which are destined for biological
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images. Moreover, Dynamic FFOCT broadens the possibilities of research
even more, for example we can adopt composite architectures i.e. multiple
networks, each taking as input a different type of data: FFOCT images,
metabolic signal from D-FFOCT. We also intend to extend the multi-modal
approach to clinical and genetic data.

These ambitious goals represent my research plan for the next 3 years and I
am entirely grateful to my supervisor for giving me the chance to pursue a
PhD that will allow me to continue on the path of this project which provoked
my scientific curiosity.
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Appendix

Figure 8: Annotated image and zoom on a cancerous area

(a) Input patch (BCC)
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(b) Conv 1

(c) Conv 2
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(d) Conv 3

(e) Conv 4

Figure 9: Input patch and activation maps corresponding to the filters in
Fig.3 for the supervised architecture trained on 40 images (left: true values;
right:with jet colormap showing high activation in red and low activation in
blue)
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(a) True Positives (BCC)

(b) True Negatives (Normal)
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(c) False Positives (Normal classified as BCC)

(d) False Negatives (BCC classified as Normal)

Figure 10: Predictions of the network trained supervised on 40 images
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