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1 Introduction

The topic of image denoising is one of high interest in the image processing
area, notably in the domains of biology and medicine where the acquisition
techniques inflict many ambiguities on the images. Several authors published
their research results on this subject. As an example, IEEEXplore provides
about 9000 results for the search term “image denoising”.

This paper is aimed to be a bibliographic study on biological image denois-
ing, based on recent journal and conference articles and books. It is not an
overview of all the denoising algorithms reported by the literature, but rather
an inquiry on a few more modern techniques with fresh expansion potential.
Based on this paper, a practical project that implements and extends the
algorithms presented will be conducted. The report is structured as follows:
firstly, a short introductory summary on the techniques of denoising and
compressed sensing, followed by a review on different optimization methods
used in image reconstruction, then is presented the way the Fourier transform
is employed as a measurement basis and in the following section some inter-
esting flavors are given on the applicability of multiple CS reconstructions
and fusions, lastly it is presented the implementation of the algorithm.

2 Denoising

Noise is caused by an abnormal fluctuation of the signal resulting in un-
wanted variations of color, brightness and/or contrast in the image. There
are different causes for the presence of noise. As a result there are also many
types of noise. To give a few examples, there is shot (or photon) noise that
can be modeled with a Poisson function, there is thermal noise which respects
a Gaussian distribution and is independent of the signal intensity. Noise is
caused by the acquisition device and conditions; in the case of biological im-
ages obtained from a microscope there is present a mixed Poisson-Gaussian
noise [1].
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The concept behind image denoising is, being given an image y damaged by
noise, to restore it to the highest possible fidelity to the original signal x, so
that y = Φx, where Φ is the measurement basis, x is called the ground truth
image, while x̂ is the predicted image obtained after denoising. Ultimately,
image denoising can be viewed as recovering a signal from inaccurate or
incomplete measurements, which is exactly what compressed sensing does.

3 Compressed Sensing

It is well known from the theory of digital signal processing, according to
Nyquist-Shannon sampling theorem, that a sequence of discrete values ex-
tracted from the original analog signal with a certain sampling rate fs (num-
ber of samples), allows reproducing the original signal with the bandwidth
bounded to the half of the sampling rate (fs

2
) with no errors [12].

If the Nyquist-Shannon condition cannot be achieved because of the lim-
itations caused by constructive parameters of the optical sensors, i.e. the
samples are taken at a slower rate than twice the band limit (it is called
sub-sampling), then the newer theory of compressive sampling demonstrates
that the original signal can be reconstructed with acceptable errors.

Compressive sampling, also known as compressed sensing (CS) is a ten year
old method proposed by [10], this theory provides a new approach for signal
acquisition stating that a signal can be exactly reconstructed using a signifi-
cantly small number of random linear measurements, under certain sparsity
conditions. Since most signals are indeed compressible in some transform
domains, CS has attracted a lot of attention in many applications, including
medical and biological imaging due to its potential of reducing the sampling
rates, power consumption and computation complexity in the image acqui-
sition.

Given the signal x ∈ <N and M samples, such as M � N , we obtain the
observation y ∈ <M , with respect to y = Φx, where Φ is a random M × N
orthonormal matrix called measurement basis and the sub-sampling rate is
τ = M/N , this ranges between 0 and 1 and intuitively implies the percentage
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of the signal that was actually observed. In practice a sub-sampling rate
between 10% and 50% allows good signal reconstruction.

Although the number of unknowns is larger than the number of measure-
ments, the signal can still be exactly recovered if it is sparse enough [10];
this is the fundamental concept of CS theory. Sparsity is the key aspect that
allows recovery x from y, it can be achieved by applying a sparsity transform
to x, this consists in assuming that x has a sparse representation in some
known basis Ψ, called sparsity basis or dictionary, such that Ψx has most of
its coefficients zero.

4 Convex Optimization

4.1 l0, l1 and l2 optimization

According to the definition given in the previous section the reconstruction
of the signal x is the sparsest signal (one with most null values) that can be
found with respect to the constraints imposed by acquisition. Therefore the
following optimization problem arises:

x̂ = arg min ‖Ψx‖0 subject to y = Φx (1)

This approach has major drawbacks in terms of computational complexity,
due to the lack of l0-norm’s mathematical representation l0-minimization is
solved by an NP-hard greedy algorithm called Matching Pursuit.

In order to try and resolve the computational obstacle, l0-norm, one may
intuit to replace it by l2-norm, since the l2-optimization is easy to solve using
the famous algorithm of Least Square Regression. However, even though
its solution is easy to compute, it will not necessary be the best solution.
Because of the smooth nature of l2-norm, it is hard to find a single, best
solution for the problem. See Fig. 1 for a visual comparison between the
three norms.

As a tradeoff between l0 and l2 norms, l1 optimization is widely used in the
more recent years. Its computational complexity is also high (the solution
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Figure 1: Solution space of l2, l1 and l0 for a 2D vector (z1, z2) [11]

has to be found among an infinitely large space of solutions), but under the
right conditions it can find the sparsest solution. One classical algorithm for
solving this problem is Basis Pursuit. Hence, it has come to this optimization
problem:

x̂ = arg min ‖Ψx‖1 subject to y = Φx (2)

Further we try to relax the constraints imposed on the observation on the
hypothesis that the observation may not be perfectly accurate, for instance,
it can be exposed to noise. Under this hypothesis the observation vector
becomes y = Φx+ b, where b is an additive noise such that ‖b‖2 ≤ ε. Given
this new constraint, the optimization problem from Eq. 2 becomes:

x̂ = arg min ‖Ψx‖1 subject to ‖Φx− y‖2 ≤ ε (3)

4.2 Total variation optimization

Another further relaxation was introduced inspired by the fact that most of
image functions are sparse or compressible in a certain domain, like the time
domain (gradient) [8] or frequency domain (wavelet, Fourier). The property
of gradient sparsity can be enforced on signal x, hence removing Ψ from the
problem formulation. This idea has been exploited by replacing the l1 norm
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with the total variation (TV ) norm defined as:

‖x‖TV =
∑
p,q

√
[x(p+ 1, q)− x(p, q)]2 + [x(p, q + 1)− x(p, q)]2 (4)

which is equivalent to:

‖x‖TV =
∑
p,q

√
∂hx(p, q)2 + ∂vx(p, q)2 (5)

where ∂hx and ∂vx are the partial horizontal and vertical derivatives of the
image x and p, q are pixel coordinates.

A new approach to the optimization problem emerged, reconstructing the
original signal by minimizing the ‖x‖TV operator:

x̂ = arg min ‖x‖TV subject to ‖Φx− y‖2 ≤ ε (6)

This approach is best suited for piecewise smooth functions [7], since this
is the a priori assumption made on the signal. As for biological imaging, it
works best for simple cells and it is fairly inconvenient for complex tissues [1].

It gained popularity due to its relatively easy computation (especially com-
pared to computing ‖Ψx‖1) and the sharpness of the reconstruction, property
that can easily be deduced from the operator’s definition.

4.3 NESTA algorithm

The optimization algorithm that was used in the paper [1] that represents
the focal point of this bibliographic research report is the NESTA algorithm.
It was introduced in [5] and it is based on Nesterov’s work on minimizing
non-smooth functions. It can solve both l1 and TV problems without specific
requirements on the sparsity matrix Ψ. Based on [7], we observe that NESTA
is a fast, robust and adaptable algorithm that consists in an accelerated
gradient descent with back-projection. In NESTA the parameter ε from
Eq. 3 is defined as:

ε = σ

√
τN + 2

√
2τN (7)

where σ is the standard deviation of the Gaussian noise and τ is the sub-
sampling rate.
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4.4 FISTA algorithm

Fast Iterative Shrinkage/Thresholding Algorithm (FISTA) is a gradient-based
method proposed by [6] which minimizes a sum of two convex functions:
x̂ = arg min f(x) + g(x) , where f is smooth and g nonsmooth. For our
problem formulation FISTA solves the optimization problem defined in Eq.8
where λ > 0 is the regularization parameter which provides a tradeoff be-
tween fidelity to measurements and noise sensitivity.

x̂ = arg min ‖Φx− y‖22 + 2λ‖x‖TV (8)

The authors name the case where Φ is the identity matrix the denoising
problem and the opposite case is called the deblurring problem. In practice,
solving the deblurring problem requires intermediary solutions of the de-
noising problems, this aspect will be further detailed in the Implementation
section of this paper.

For this project the FISTA algorithm was coded in Java, with Φ being the
Fast Fourier Transform (FFT) and ΦT the Inverse Fast Fourier Transform
(IFFT), respectively.

5 Fourier Transform

5.1 FT as observation

A common choice in the literature for the projection matrix Φ is the Fourier
transform (FT) because of its properties and convenience in multiple applica-
tions [12]. Moreover, MRI images are acquired directly in the Fourier space.
Noticeably CS theory has improved the field of medical imaging, where it
has enabled speedups by a factor of seven in pediatric MRI while preserving
diagnostic quality. As for biological images, the Fourier coefficients from im-
ages acquired with a microscope can be measured via digital holography or
optical Fourier Transform.
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5.2 Sampling patterns in FT

As illustrated in the simple yet eloquent experiment in [4], randomly uniform
sampling in the Fourier domain is far from being optimal. On the other hand,
the most of high spatial energy seems to be concentrated in the low frequency
area of the Fourier domain as illustrated in Fig. 2.

Figure 2: Two reconstructions of the same noisy version of the
Shepp-Logan phantom image, using two different sampling masks

in the Fourier domain (sub-sampling rate τ = 0.15) [4]

Even though the Gaussian and polynomial sampling masks are widely used,
in [4] is presented a new approach especially suitable for biological images. By
fixing a cut-off frequency υc, all the coefficients below this frequency threshold
are kept and coefficients in the higher frequencies are randomly picked with
respect to the global sub-sampling rate τ . As stated in [1] the parameter υc
represents the radius of the fully sampled area, which is aimed to contain
90% of the total energy in the spatial domain; however, this corresponds to
a much smaller number of coefficients (from 3% up to 20%) in the Fourier
domain.
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Allegedly, depending of the type of application developed and the a priori in-
formation on the type of input, as well as the expected output, these sampling
patterns can be customized in different ways. For instance, in [3], the prob-
lem tackled is the simplification (in the purpose of compression) of Spectral
Domain Optical Coherence Tomography (SD-OCT) images of cardiac tissue.
Consequently, knowing the particularities of these types of medical images,
namely that cardiac tissue layers are horizontal and somewhat parallel, a
suitable sampling pattern can be chosen. By applying a Hough transform
on the edges, the most probable direction is chosen. The Hough transform
takes a binary image and detects the directions of the straight edges. For
every point in the spatial domain there is a curve in the Hough domain that
represents all the possible lines that can pass through that point [9], an inter-
section of two curves from the Hough space represents a line. In the situation
presented, the direction chosen corresponds to the point in the Hough space
where the most curves join. From this direction a star pattern is obtained
in the Fourier domain, by adding equally dispersed branches up to a total
number given. Subsequently, random coefficients are sampled up to reaching
the sub-sampling rate τ .

Hence, partially random patterns in the Fourier transform matrix with higher
sampling density in the low frequency area of the domain are advised and
will be employed in this project.

6 Multiple CS Reconstructions

6.1 Multiple measurements and reconstructions

Given a certain problem formulation, one may desire to acquire high recon-
struction quality while simultaneously maintaining a very low sub-sampling
rate. Inspired by video reconstruction, [1] and [3] combine multiple subopti-
mal reconstructions to obtain a high quality denoised image.

Given a noisy image y and its Fourier transform Φ, a number of R observa-
tions yk can be generated from zeroing coefficients of Φ with respect to the
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chosen sub-sampling rate τ and the preferred sampling pattern (as presented
in 5.2):

yk = Φky with k ∈ {1, .., R} (9)

From each partial measurement yk is computed a partial prediction x̂k of the
ground truth image x using TV regularization method presented in 4.2. All
the local predictions are assembled into a final prediction x̂ by means of a
custom fusion function f .

6.2 Fusion functions

A straightforward approach for the fusion function is averaging the partial es-
timators, nevertheless, as acknowledged in [1], this method does not perform
as desired in preserving the quality of the edges in the image.

x̂mean =
1

R

R∑
k=1

x̂k (10)

Other intuitive fusion operators are Median, Min, Max, Mode in neighbor-
hood.

A more effective fusion function is proposed in [1], it amplifies the efficiency
of the mean function by adding a new operator called variance map which
acts as the standard deviation of the partial measures. This operator empha-
sizes the incoherence between the partial reconstructions which concentrate
around the edges of the image, it is computed as follows:

σx =

√√√√ 1

R− 1

R∑
k=1

(x̂k − x̂mean)2 (11)

The proposed method is called spatially-adaptive fusion and combines the
two previously introduced operators:

x̂ = σx ◦ y + (1− σx) ◦ x̂mean (12)

where ◦ is the Hadamard product (element-wise multiplication of matrices)
and, in this case, σx represents the normalized variance map which acts as a
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Figure 3: Denoising results on the synthetic cell image (perturbed
with a mixed Poisson-Gaussian noise with parameters σ = 0.1 and

λ = 0.02) obtained with different methods. [1]

weight matrix with values between 0 and 1; the higher weights being assigned
to edge pixels.

Observing the good results obtained with this approach, which seems to
be comparable with the more classical methods, it will be exploited and
extended in the project that follows this paper. See results in Fig.3.
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7 Implementation

After studying state of the art methods, there has been implemented a de-
noising plugin for the Icy platform.

7.1 ICY platform

Icy is a free and open source platform that comes with a wide range of
functionalities presented in the form of different plug-ins. They serve for
segmentation, feature detection, edge detection, tracking, optical flow com-
putation or even machine learning. It also has an intuitive user interface
that makes it very easy to use for its intended target user base that consist
of biologist with little to no knowledge in computing.

The programming language that Icy is written in, i.e. Java, makes it avail-
able on all operating systems due to the Java Virtual Machine. Therefore it
has a high degree of both usability and availability.

7.2 The algorithm

The proposed denoising algorithm, presented in the pseudocode below, takes
as input arguments y the noisy image, R the number of reconstructions, τ
the subsampling rate for every reconstruction, υ the cutoff frequency and λ
the smoothness parameter of FISTA.

The input arguments are constrained as follows: for best results y has to be
a grayscale image, for colored images the output will be a greyscale image;
R varies between 1 and 10 reconstructions; τ obviously ranges between 10%
and 100%; υ between 0 and 1 and λ can take values in the range 1 - 10.

It returns as output the denoised image x̂. There are also visualized the
sampling in the Fourier space and the variation map. Those can help the
curious understand how the algorithm works and, on the other hand, they
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can serve as a guide for the user on how to fine tune the parameters in order
to get the best results.

input : y, R, τ , υ, λ
output: x̂
begin

for r ← 1 to R do
mask[r] = generateSamplingMask(τ, υ)
yi[r] = FFTsampling(y,mask[r])
xi[r] = optimization(yi[r], λ)

end
x̂ = fusion(xi)
return x̂

end
Algorithm 1: Proposed algorithm

The sampling and fusioning functions respect the methods presented before
in the sections 5.2 and 6.2, respectively.

The algorithm presented below solves the optimization in Eq.8 by calling at
every iteration the algorithm of fast gradient projection FGP (b, λ,N) whose
implementation is described in detail in [6] and whose purpose is to return x̂
that minimizes ‖x− b‖22 + 2λ‖x‖TV .

input : b, λ, N
output: x̂
step 0: y(1) = x(0) = 0, L = 8λ
step k: (1 ≤ k < N)

x(k) = FGP (y(k) − 2
L

ΦT (Φy(k) − b), 2λ
L
, N)

t(k+1) = 1+
√

1+4t(k)
2

2

y(k+1) = x(k) + t(k)−1
t(k+1) (x(k) − x(k−1))

Algorithm 2: Optimization

Please note that for readability purposes the notation y from Eq.8 represent-
ing the noisy image has been changed to b in the pseudocode. We remind
that Φ and ΦT represent FFT and IFFT, respectively, while L is the step-
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size. The stopping criterion of the algorithm is either reaching the maximum
number of iterations N or getting an error smaller than a value ε = 0.0001,
the error is computed by subtracting the Frobenius norms of the results of
the last two iterations.

7.3 Results

In this section there are shown the results of the method using two instances
of the Shepp-Logan phantom image contaminated with different levels of
noise, as well as on a HeLa cell microscopic image acquired in the laboratories
of Pasteur Institute. For quality evaluation purposes the plugin was provided
also with the ground truth image. For the synthetic cell, producing the
ground truth was a straightforward task, but in the case of the real cell,
the clean microscopic image, uncontaminated by noise, was obtained as a
result of special acquisition conditions, like an abnormally long acquisition
time. This way it can be computed the Peak Signal-to-Noise Ratio (PSNR)
between the uncontaminated image x and the prediction x̂ obtained by the
presented method. Both the ground truth and the noisy images can be seen
in Fig.4 and Fig.5.

(a) Ground truth (b) Test image 1 (c) Test image 2

Figure 4: Synthetic test data - Shepp-Logan phantom cell
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(a) Ground truth (b) Test image 3

Figure 5: Real test data - HeLa cell

Based on the results obtained, it can be shown that this a robust method,
mainly because there are obtained similar qualitative results for lower (10%)
and higher (40%) subsampling rates, nevertheless, only a small portion of
the signal is acquired by virtue of compressed sensing. What is more, it is
actually advised to sample a sufficiency small number of coefficients in order
not to get in the ’noisy area’ of frequencies.

The randomly sampled Fourier coefficients (high frequency coefficients) can
bring incoherence to the variance map, so, in some cases, better results are
obtained from a low subsampling rate and a low cutoff frequency.

The smoothing parameter is particularly important in the case of very noisy
images in order to reduce the artifacts. On the other hand, we notice that
its influence in the quality of the reconstruction is not really backed up by
the PSNR score, but the visual quality is noticeably improved.
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(a) R = 4, τ = 10%, υ = 0.3, λ = 1

(b) R = 4, τ = 30%, υ = 0.3, λ = 1

(c) R = 10, τ = 10%, υ = 0.3, λ = 1
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(d) R = 4, τ = 40%, υ = 0.4, λ = 1

(e) R = 4, τ = 30%, υ = 0.3, λ = 5

Figure 6: Test results on image 1
(sampling in Fourier domain, variance map, denoised image)
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(a) R = 4, τ = 30%, υ = 0.3, λ = 7

(b) R = 4, τ = 30%, υ = 0.3, λ = 2

(c) R = 4, τ = 50%, υ = 0.4, λ = 9
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(d) R = 4, τ = 20%, υ = 0.5, λ = 10

Figure 7: Test results on image 2
(sampling in Fourier domain, variance map, denoised image)

(a) R = 2, τ = 10%, υ = 0.1, λ = 2
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(b) R = 2, τ = 30%, υ = 0.3, λ = 1

(c) R = 2, τ = 40%, υ = 0.4, λ = 2

Figure 8: Test results on image 3
(sampling in Fourier domain, variance map, denoised image)
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Table 1: Test results from parameter tuning

R τ(%) υ(Hz) λ PSNR(dB)

Test image 1

4 10 0.3 1 23.62585
4 10 0.3 1 23.80025
10 10 0.3 1 23.63045
4 40 0.4 1 23.80707
4 30 0.3 5 23.51782

Test image 2

4 30 0.3 7 14.5671
4 30 0.3 2 14.48805
4 50 0.4 9 14.78141
4 20 0.5 10 14.70108

Test image 3
2 10 0.1 2 21.86206
2 30 0.3 1 25.92622
2 40 0.4 2 26.1646

8 Conclusion

This paper documented my efforts in both literature review and successful
implementation of a researched method for biological image denoising, that
makes use of the acclaimed theory of compressed sensing with TV regular-
ization. The final result is a ready-to-use plugin that is highly accessible
and user friendly due to its integration with the Icy platform. It is also very
flexible due to the multiple parameters the user can tune depending on the
image that he wishes to process.

For future development of the plugin, I intend to add another degree of
freedom for the algorithm, i.e. multiple sampling patterns for the user to
choose from. Those might be Gaussian sampling and fully random sampling.
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